|
Author |
hbghlyj
Posted 2021-12-3 02:30
Last edited by hbghlyj 2022-7-15 09:35zhuanlan.zhihu.com/p/39410589
zhuanlan.zhihu.com/p/24137170
math.fau.edu/yiu/CHP2009/Chapter24withsupp.pdf
双纽线周长的积分是椭圆积分的一个例子.
(Gauss).设a≤b为正实数,agM表示算术-几何平均数,则$\int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}}=\frac{\pi}{\operatorname{agM}(a, b)}$.
证明:首先证明将a,b换成$\sqrt{2ab}$和$a+b\over2$时积分不变.考虑代换$x=\frac{1}{2}\left(y-\frac{a b}{y}\right)$,当y从0变到∞时,x从-∞变到∞.注意到$x^{2}+a b=\frac{1}{4}\left(y-\frac{a b}{y}\right)^{2}+a b=\frac{1}{4}\left(y+\frac{a b}{y}\right)^{2}=\frac{\left(y^{2}+a b\right)^{2}}{4 y^{2}}$,
$x^{2}+\left(\frac{a+b}{2}\right)^{2}=\frac{1}{4}\left(\left(y-\frac{a b}{y}\right)^{2}+\left(a+b\right)^{2}\right)=\frac{\left(y^{2}+a^{2}\right)\left(y^{2}+b^{2}\right)}{4 y^{2}}$,
$d x=\frac{1}{2}\left(1+\frac{a b}{y^{2}}\right) d y=\frac{\left(y^{2}+a b\right) d y}{2 y^{2}}$.
从而$\int_{x=-\infty}^{x=\infty} \frac{d x}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}}=\int_{y=0}^{y=\infty} \frac{2 d y}{\sqrt{\left(y^{2}+a^{2}\right)\left(y^{2}+b^{2}\right)}}=\int_{x=-\infty}^{x=\infty} \frac{d x}{\sqrt{\left(x^{2}+a_1{}^{2}\right)\left(x^{2}+b_1{}^{2}\right)}}$
继续用几何和算术平均数替换,我们得到一个收敛于${\rm agM}(a,b)$的区间套$[a,b]\supset\left[a_1,b_1\right]\supset\left[a_2,b_2\right] \supset \cdots \supset\left[a_n,b_n\right] \supset \cdots$
且对任意正整数$n$有$\int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a_{n}^{2}\right)\left(x^{2}+b_{n}^{2}\right)}}=\int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}}$.
因为$\int_{-\infty}^{\infty} \frac{d x}{x^{2}+b_{n}^{2}} \leq \int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a_{n}^{2}\right)\left(x^{2}+b_{n}^{2}\right)}} \leq \int_{-\infty}^{\infty} \frac{d x}{x^{2}+a_{n}^{2}}$,
我们有$\frac{\pi}{b_{n}} \leq \int_{-\infty}^{\infty} \frac{dx}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}} \leq \frac{\pi}{a_{n}}$
因为$(a_n),(b_n)$均收敛于${\rm agM}(a,b)$,就有$\frac{\pi}{\operatorname{agM}(a, b)} \leq \int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}} \leq \frac{\pi}{\operatorname{agM}(a, b)}$,
即$\int_{-\infty}^{\infty} \frac{d x}{\sqrt{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}}=\frac{\pi}{\operatorname{agM}(a, b)}$. 伯努利双纽线$\rho^{2}=2 a^{2} \cos 2 \theta$的周长为$\frac{4 \sqrt{2} \pi a}{\operatorname{agM}(1, \sqrt{2})}$.
双纽线周长的积分,即$\int_{0}^{1} \frac{d t}{\sqrt{1-t^{4}}}$可以转化为上述定理中考虑的形式之一,通过$t=\frac{1}{\sqrt{x^{2}+1}}$.
注意$x$的范围从0到∞与$t$的范围从0到1相反,并且$d t=\frac{-x d x}{\left(x^{2}+1\right)^{\frac{3}{2}}}$,$1-t^{4}=1-\frac{1}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}\left(x^{2}+2\right)}{\left(x^{2}+1\right)^{2}}$.
因此,双纽线的周长是$4 \sqrt{2} a \int_{t=0}^{t=1} \frac{d t}{\sqrt{1-t^{4}}}=4 \sqrt{2} a \int_{x=0}^{x=\infty} \frac{d x}{\sqrt{\left(x^{2}+1\right)\left(x^{2}+2\right)}}=\frac{2 \sqrt{2} \pi a}{\operatorname{agM}(1, \sqrt{2})}$.
注:${1\over\operatorname{agM}(1,\sqrt2)}=0.8346268\dots$称为Gauss常数. |
|