Forgot password?
 Register account
View 508|Reply 1

[数列] 拉格朗日有唔有型?

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2021-12-5 22:47 |Read mode
Last edited by tommywong 2021-12-6 08:10$a_{k+1}=a$

$\displaystyle \sum_{i=1}^k \frac{1}{a-a_i}\prod_{j=1\atop j\neq i}^k \frac{1}{a_i-a_j}
=-\sum_{i=1}^k \prod_{j=1\atop j\neq i}^{k+1} \frac{1}{a_i-a_j}$

$\displaystyle =\prod_{j=1}^k \frac{1}{a-a_j}-\sum_{i=1}^{k+1} \prod_{j=1\atop j\neq i}^{k+1} \frac{1}{a_i-a_j}=\prod_{j=1}^k \frac{1}{a-a_j}$

$\displaystyle \sum_{i=1}^k \frac{1}{(a-a_i)^2}\prod_{j=1\atop j\neq i}^k \frac{1}{a_i-a_j}
=\left(\sum_{j=1}^k \frac{1}{a-a_j}\right)
\left(\prod_{j=1}^k \frac{1}{a-a_j}\right) ?$

$\displaystyle \sum_{i=1}^k \frac{1}{(a-a_i)^3}\prod_{j=1\atop j\neq i}^k \frac{1}{a_i-a_j}
= ?$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-12-6 01:28
第一个我之前就是用拉格朗证的:forum.php?mod=viewthread&tid=6913

第二、三个就是第一个对 `a` 求导?

Rate

Number of participants 1威望 +2 Collapse Reason
tommywong + 2 有型

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit