|
青青子衿
Posted at 2021-12-11 12:02:00
Last edited by 青青子衿 at 2023-5-29 16:18:00回复 1# isee
详细过程可以参考《吉米数学分析习题集学习指引(第二册)》第63页 习题1985
kuing.cjhb.site/forum.php?mod=viewthread&tid=5961
\begin{align*}
\color{black}{\sum _{k=1}^{\infty } \frac{\sinh \left(\sqrt{2}\,k\pi\right)}{k^5 \left[\cosh\left(\sqrt{2}\,k\pi\right)-\cos \left(\sqrt{2}\,k\pi\right)\right]}=\frac{\pi ^5}{210 \sqrt{2}}}
\end{align*}
\begin{align*}
\color{black}{\int_0^{+\infty}\frac{\cos \left(\left.\pi\,\!x\middle/3\right.\right)}{\exp \left(2 \pi \sqrt{x}\right)-1}\,\mathrm{d}x=\dfrac{8-\sqrt{6}}{8}}
\end{align*}
\begin{align*}
\color{black}{
\frac{2\sqrt{2}}{3\sqrt{2}-4+8{\displaystyle\int_0^{+\infty}\dfrac{\cos \left(\left.\pi\,\!x\middle/4\right.\right)}{\exp \left(2 \pi \sqrt{x}\right)-1}\,\mathrm{d}x}}
}\\
\end{align*}
\begin{align*}
\color{black}{\sum_{n=1}^{\infty}\dfrac{n}{\exp\big(\sqrt{3}\pi\,\!n\big)-1}}=?
\end{align*}
MathJax Original Source
\begin{align*}
&\color{black}{{\large{\int}}_{0}^{+\infty}\frac{1}{\big[\left(x-\tanh x\right)^{2}+\pi^{2}\big]\cosh (x)}\,{\mathrm{d}}x=\dfrac{3}{20}}\\
&\color{black}{{\large{\int}}_{0}^{+\infty}\frac{1}{\big[\left(x-\tanh x\right)^{2}+\pi^{2}\big]\cosh (2x)}\,{\mathrm{d}}x=\>\>?}\\
&\color{black}{\,{\mathrm{d}}x=\>\>?}
\end{align*}
\begin{align*}
LHS&=\color{black}{\left[\sum_{n=0}^{\infty}\left(n+1\right)x^{n}\right]\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{n}\right]\left[\sum_{n=0}^{\infty}\left(n+1\right)x^{5n}\right]\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{5n}\right]}\\
&=\color{black}{\frac{1}{(1-x)^2}\cdot\frac{1}{1+x}\cdot\frac{1}{(1-x^5)^2}\cdot\frac{1}{1+x^5}}\\
&=\color{black}{\frac{(1+x)(1+x^5)}{(1-x)^2(1+x)^2(1-x^5)^2(1+x^5)^2}} \\
&=\color{black}{\frac{(1+x)(1+x^5)}{(1-x^2)^2(1-x^{10})^2}}\\
&=\color{black}{(1+x)(1+x^5)\cdot\frac{1}{(1-x^2)^2(1-x^{10})^2}}\\
&=\color{black}{(1+x)(1+x^5)\left[\sum_{k=0}^\infty (k+1) x^{2k}\right]\left[\sum_{l=0}^\infty (l+1) x^{10l}\right]}\\
&=\color{black}{(1+x)(1+x^5)\left[\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)x^{2k+10l}\right]}\\
&=\color{black}{\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)(1+x)(1+x^5)x^{2k+10l}}\\
RHS&=\color{black}{\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)\big(x^{2k+10l}+x^{2k+10l+1}+x^{2k+10l+5}+x^{2k+10l+6}\big)}\\
\end{align*}
\begin{align*}
\color{black}{\begin{vmatrix}
{\displaystyle\int}_1^3\dfrac{\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}&{\displaystyle\int}_1^3\dfrac{x\>\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}\\
{\displaystyle\int}_3^6\dfrac{\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}&{\displaystyle\int}_3^6\dfrac{x\>\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}\\
\end{vmatrix}=2\pi}
\end{align*} |
|