Forgot password?
 Create new account
View 495|Reply 3

含根式的积分$\int \frac{\mathrm dx}{\sqrt[3]{1+x^3}}$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-12-9 23:39:16 |Read mode
求 $$\int \frac{\mathrm dx}{\sqrt[3]{1+x^3}}.$$

真的忘记了,然后两次换元后,稍稍记起一点点儿一点点点儿.

令 $t=(1+x^{-3})^{1/3}$ 可化为有理分式积分.



类似的还有 $\int \frac{\mathrm dx}{\sqrt[4]{1+x^4}}$,令 $t=(1+x^{-4})^{1/4}$.

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2021-12-11 12:02:00
Last edited by 青青子衿 at 2023-5-29 16:18:00回复 1# isee
详细过程可以参考《吉米数学分析习题集学习指引(第二册)》第63页 习题1985
kuing.cjhb.site/forum.php?mod=viewthread&tid=5961



\begin{align*}
\color{black}{\sum _{k=1}^{\infty } \frac{\sinh \left(\sqrt{2}\,k\pi\right)}{k^5 \left[\cosh\left(\sqrt{2}\,k\pi\right)-\cos \left(\sqrt{2}\,k\pi\right)\right]}=\frac{\pi ^5}{210 \sqrt{2}}}
\end{align*}


\begin{align*}
\color{black}{\int_0^{+\infty}\frac{\cos \left(\left.\pi\,\!x\middle/3\right.\right)}{\exp \left(2 \pi  \sqrt{x}\right)-1}\,\mathrm{d}x=\dfrac{8-\sqrt{6}}{8}}
\end{align*}

\begin{align*}
\color{black}{
\frac{2\sqrt{2}}{3\sqrt{2}-4+8{\displaystyle\int_0^{+\infty}\dfrac{\cos \left(\left.\pi\,\!x\middle/4\right.\right)}{\exp \left(2 \pi \sqrt{x}\right)-1}\,\mathrm{d}x}}
}\\
\end{align*}

\begin{align*}
\color{black}{\sum_{n=1}^{\infty}\dfrac{n}{\exp\big(\sqrt{3}\pi\,\!n\big)-1}}=?
\end{align*}

MathJax Original Source
\begin{align*}
&\color{black}{{\large{\int}}_{0}^{+\infty}\frac{1}{\big[\left(x-\tanh x\right)^{2}+\pi^{2}\big]\cosh (x)}\,{\mathrm{d}}x=\dfrac{3}{20}}\\
&\color{black}{{\large{\int}}_{0}^{+\infty}\frac{1}{\big[\left(x-\tanh x\right)^{2}+\pi^{2}\big]\cosh (2x)}\,{\mathrm{d}}x=\>\>?}\\
&\color{black}{\,{\mathrm{d}}x=\>\>?}

\end{align*}

\begin{align*}
LHS&=\color{black}{\left[\sum_{n=0}^{\infty}\left(n+1\right)x^{n}\right]\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{n}\right]\left[\sum_{n=0}^{\infty}\left(n+1\right)x^{5n}\right]\left[\sum_{n=0}^{\infty}\left(-1\right)^{n}x^{5n}\right]}\\
&=\color{black}{\frac{1}{(1-x)^2}\cdot\frac{1}{1+x}\cdot\frac{1}{(1-x^5)^2}\cdot\frac{1}{1+x^5}}\\
&=\color{black}{\frac{(1+x)(1+x^5)}{(1-x)^2(1+x)^2(1-x^5)^2(1+x^5)^2}} \\
&=\color{black}{\frac{(1+x)(1+x^5)}{(1-x^2)^2(1-x^{10})^2}}\\
&=\color{black}{(1+x)(1+x^5)\cdot\frac{1}{(1-x^2)^2(1-x^{10})^2}}\\
&=\color{black}{(1+x)(1+x^5)\left[\sum_{k=0}^\infty (k+1) x^{2k}\right]\left[\sum_{l=0}^\infty (l+1) x^{10l}\right]}\\
&=\color{black}{(1+x)(1+x^5)\left[\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)x^{2k+10l}\right]}\\
&=\color{black}{\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)(1+x)(1+x^5)x^{2k+10l}}\\
RHS&=\color{black}{\sum_{k=0}^\infty\sum_{l=0}^\infty (k+1)(l+1)\big(x^{2k+10l}+x^{2k+10l+1}+x^{2k+10l+5}+x^{2k+10l+6}\big)}\\
\end{align*}

\begin{align*}
\color{black}{\begin{vmatrix}
{\displaystyle\int}_1^3\dfrac{\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}&{\displaystyle\int}_1^3\dfrac{x\>\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}\\
{\displaystyle\int}_3^6\dfrac{\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}&{\displaystyle\int}_3^6\dfrac{x\>\mathrm{d}x}{\sqrt{|(x-1)(x-3)(x-6)|}}\\
\end{vmatrix}=2\pi}
\end{align*}

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2021-12-12 23:29:46
回复 2# 青青子衿


我也查到了,菲赫金哥尔茨的《微积分学教程》第二卷:第八章 原函数(不定积分),二项式微分的积分.

如果只需要结论(是否有初等原函数),即(二项式微分的积分)切比雪夫定理:
$$\int x^m(a+bx^n)^p\mathrm dx,$$其中 $a$,$b$ 是任何常数,而指数 $m,n,p$ 是有理数:

情形1. $p$ 是整数,令 $ x=t^\lambda,\lambda$ 为 $m,n$ 的最小公分母.

情形2. $\frac{m+1}n$ 是整数,令 $ a+bx^n=t^\lambda,\lambda$ 为 $p$ 的分母.

情形3. $\frac{m+1}{n}+p$ 是整数,令 $ax^{-n}+b=t^\lambda,\lambda$ 为 $p$ 的分母.

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2021-12-12 23:33:44
回复 3# isee

源自知乎提问

题: $\int \frac{x^4}{\sqrt{1+x^2}}\mathrm dx.$

尝试换元化为有理式积分.

令 $t^2=\frac {1+x^2}{x^2},$ 则 $x=(t^2-1)^{-\frac 12},$ $\mathrm dx=-(t^2-1)^{-\frac 32}t\mathrm dt.$

\begin{align*} \int \frac{x^4}{\sqrt{1+x^2}}\mathrm dx&=-\int \frac{(t^2-1)^{-2}}{t(t^2-1)^{-\frac 12}}\cdot (t^2-1)^{-\frac 32}t\mathrm dt\\[1em] &=-\int \frac{1}{(t^2-1)^3}\mathrm dt, \end{align*}

化为有理函数了,下面就是积出结果.

用待定系数法可以得到部分分式

$$\frac{1}{(t^2-1)^3}=\frac {3/16}{t-1}+\frac {-3/16}{(t-1)^2}+\frac {1/8}{(t-1)^3}+\frac {-3/16}{t+1}+\frac {-3/16}{(t+1)^2}+\frac {-1/8}{(t+1)^3},$$

以下代换回 $x,\ t^2-1=\frac {1}{x^2}$

\begin{align*} \int \frac{x^4}{\sqrt{1+x^2}}\mathrm dx&=-\int \frac{1}{(t^2-1)^3}\mathrm dt\\[1em] &=\frac 1{16}\int \left(\frac {-3}{t-1}+\frac {3}{(t-1)^2}+\frac {-2}{(t-1)^3}+\frac {3}{t+1}+\frac {3}{(t+1)^2}+\frac {2}{(t+1)^3}\right)\mathrm dt\\[1em] &=\frac 1{16}\left(-3\ln|t-1|-\frac {3}{t-1}+\frac {1}{(t-1)^2}+3\ln |t+1|-\frac {3}{t+1}-\frac {1}{(t+1)^2}\right)+C\\[1em] &=\frac 1{16}\left(3\ln\left|\frac{t+1}{t-1}\right|-\frac {6t}{t^2-1}+\frac {4t}{(t^2-1)^2}\right)+C\\[1em] &=\frac 1{16}\left(3\ln\left|\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}\right|-6x\sqrt{1+x^2}+4x^3\sqrt{1+x^2}\right)+C\\[1em] &=\frac 1{16}\left(3\ln\left(1+2x\sqrt{1+x^2}+2x^2\right)-6x\sqrt{1+x^2}+4x^3\sqrt{1+x^2}\right)+C. \end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 19:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list