Forgot password?
 Register account
View 448|Reply 0

[不等式] 多项式的根均为实数 导数 不等式 逆命题

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2021-12-11 08:10 |Read mode
Last edited by hbghlyj 2021-12-11 20:13如果一个多项式 \(p(x)\) 的所有根全为实数,那么\(p'(x)^2 \ge p(x) p''(x)\)
证明
设$p(x)=c \prod_{i=1}^n (x-\alpha_i),\alpha_i\in\mathbb R$.要证明的不等式就等价于\[\left[\sum\frac{p(x)}{x-\alpha_i}\right]^2 \ge p(x) \sum_i\sum_{j\neq i} \frac{p(x)}{(x-\alpha_i)(x-\alpha_j)}.\]左边-右边=$\sum\left(\frac{p(x)}{x-\alpha_i}\right)^2$可知原不等式成立.


逆命题成立吗?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:01 GMT+8

Powered by Discuz!

Processed in 0.017320 second(s), 22 queries

× Quick Reply To Top Edit