Forgot password
 Register account
View 448|Reply 3

[数论] 求证:$9\mid (3n+1)7^n-1$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2021-12-24 12:25 |Read mode
源自知乎提问


构造数列

$$\{a_n\}:a_1=27,\ a_2=342\ ,a_{n+2}=14a_{n+1}-49a_{n}-36,$$

由数学归纳法易知 $9\mid a_n.$

另一方面

\begin{align*} a_{n+2}&=14a_{n+1}-49a_{n}-36\\[1em] \iff a_{n+2}+1&=14(a_{n+1}+1)-49(a_{n}+1)\\[1em] \iff a_{n+2}+1-7a_{n+1}&=7\left((a_{n+1}+1)-7(a_{n}+1)\right)\\[1em] \therefore \ a_{n+1}+1-7(a_{n}+1)&=(343-7\times 28)\cdot 7^{n-1}=3\cdot 7^{n+1}\\[1em] \iff \frac{\ a_{n+1}+1}{7^{n+1}}-\frac {a_{n}+1}{7^n}&=3\\[1em] \therefore \ a_n+1&=(1+3n)\cdot 7^n\\[1em] a_n&=(3n+1)7^n-1. \end{align*}

即 $9\mid (3n+1)7^n-1.$

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2021-12-24 12:46
$7^n\equiv (1+2\times 3)^n\equiv 1+6n\pmod{9}$
$(3n+1)7^n-1\equiv (3n+1)(1+6n)-1\equiv 0\pmod{9}$

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2021-12-24 12:50
回复 2# tommywong

哈哈哈哈哈,数论真是两行十几秒种,理解几分钟;我是数列很多行几分钟,理解也是几分钟~~~~~~~~

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-12-24 13:48
回复 3# isee

`(1+2\times 3)^n\equiv 1+6n\pmod{9}` 用二项式定理就能理解了,后面都是显然,用不了几分钟来理解啊

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:04 GMT+8

Powered by Discuz!

Processed in 0.012752 seconds, 22 queries