|
源自知乎提问
构造数列
$$\{a_n\}:a_1=27,\ a_2=342\ ,a_{n+2}=14a_{n+1}-49a_{n}-36,$$
由数学归纳法易知 $9\mid a_n.$
另一方面
\begin{align*} a_{n+2}&=14a_{n+1}-49a_{n}-36\\[1em] \iff a_{n+2}+1&=14(a_{n+1}+1)-49(a_{n}+1)\\[1em] \iff a_{n+2}+1-7a_{n+1}&=7\left((a_{n+1}+1)-7(a_{n}+1)\right)\\[1em] \therefore \ a_{n+1}+1-7(a_{n}+1)&=(343-7\times 28)\cdot 7^{n-1}=3\cdot 7^{n+1}\\[1em] \iff \frac{\ a_{n+1}+1}{7^{n+1}}-\frac {a_{n}+1}{7^n}&=3\\[1em] \therefore \ a_n+1&=(1+3n)\cdot 7^n\\[1em] a_n&=(3n+1)7^n-1. \end{align*}
即 $9\mid (3n+1)7^n-1.$ |
|