Forgot password?
 Register account
View 509|Reply 9

[不等式] 求助一个不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-1-6 00:29 |Read mode
若$x_1,x_2,...,x_n>0,且x_1+x_2+...+x_n=1,a>1$,求证:$a^{x_1}+a^{x_2}+...+a^{x_n}<n-1+a$。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-1-6 02:02
勃撸力不等式一步即秒啊

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-1-6 09:21
回复 2# kuing
明白了,谢谢kuing!
若将条件中的$a>1$改为$0<a<1$,后面的结论如何变化?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-1-6 14:13
回复 3# lemondian

没有变化

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-1-7 10:37
再问一个:
若$x_1,x_2,...,x_n>0,x_1+x_2+...+x_n=1,a>0且a\ne1$,是不是有:$a^{x_1}+a^{x_2}+...+a^{x_n}\geqslant n\sqrt[n]{a}$。
若成立,如何证明?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-1-7 11:16
回复 5# lemondian

这就是均值啊....
\[\frac{a^{x_1}+...+a^{x_n}}{n}\ge \sqrt[n]{a^{x_1}\cdot...\cdot a^{x_n}}=\sqrt[n]{a}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-1-7 11:26

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-1-7 14:18
回复 6# 战巡
唉,一直想着琴生了!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-1-7 14:23
回复 8# lemondian

琴生也是一步啊,a^x 必下凸,一下就完了。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-1-7 14:51
回复 9# kuing
是的,都简单,只是为何没想到用均值呢?

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit