Forgot password?
 Create new account
View 270|Reply 0

隐函数 导数

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-1-7 15:14:41 |Read mode
Last edited by hbghlyj at 2022-1-7 15:44:00Ⅰ $x=x(y, z), y=y(x, z), z=z(x, y)$都是由方程$F(x, y, z)=0$所确定的具有连续偏导数的函数,证明\[\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x}=-1\]
Ⅱ 设$y=f(x,t)$,而$t=t(x,y)$是由方程$F(x,y,t)=0$所确定的函数,其中$f,F$都具有一阶连续偏导数.试证明\[\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\partial f}{\partial x} \frac{\partial F}{\partial t}-\frac{\partial f}{\partial t} \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \frac{\partial F}{\partial y}+\frac{\partial F}{\partial t}}\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list