Forgot password?
 Register account
View 473|Reply 4

[几何] 过四点的球

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-1-8 22:33 |Read mode
Last edited by hbghlyj 2022-1-8 23:29(Solid Geometry, P M Cohn, Library of Mathematics, Exercise on chapter 4, problem 8, page 49)
经过四个不共面的点$a,b,c,d$的球的方程为\begin{align*}(|a|^2-|x|^2)[b-x,c-x,d-x]&-(|b|^2-|x|^2)[a-x,c-x,d-x]\\&+(|c|^2-|x|^2)[a-x,b-x,d-x]-(|d|^2-|x|^2)[a-x,b-x,c-x]=0\end{align*}$a,b,c,d$满足这个方程,然后如何证明呢

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-1-8 23:05
看不懂,这些字母代表啥?向量?还是别的量呢?中括号又是啥意思?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-1-8 23:27
回复 2# kuing
字母a,b,c,d,x都是向量(position vectors),中括号是混合积(triple product)

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2022-1-11 19:38
回复 1# hbghlyj
很简单,凑成行列式形式……
\begin{gather*}
\begin{split}
&(|a|^2-|x|^2)[b-x,c-x,d-x]\\
&\qquad-(|b|^2-|x|^2)[a-x,c-x,d-x]\\
&\qquad\qquad+(|c|^2-|x|^2)[a-x,b-x,d-x]\\
&\qquad\qquad\qquad-(|d|^2-|x|^2)[a-x,b-x,c-x]=0\end{split}\\
\\
\begin{split}
&(|a|^2-|x|^2)\begin{vmatrix}
x_2-x&y_2-y&z_2-z\\
x_3-x&y_3-y&z_3-z\\
x_4-x&y_4-y&z_4-z\\
\end{vmatrix}\\
&\qquad-(|b|^2-|x|^2)\begin{vmatrix}
x_1-x&y_1-y&z_1-z\\
x_3-x&y_3-y&z_3-z\\
x_4-x&y_4-y&z_4-z\\
\end{vmatrix}\\
&\qquad\qquad+(|c|^2-|x|^2)\begin{vmatrix}
x_1-x&y_1-y&z_1-z\\
x_2-x&y_2-y&z_2-z\\
x_4-x&y_4-y&z_4-z\\
\end{vmatrix}\\
&\qquad\qquad\qquad-(|d|^2-|x|^2)\begin{vmatrix}
x_1-x&y_1-y&z_1-z\\
x_2-x&y_2-y&z_2-z\\
x_3-x&y_3-y&z_3-z\\
\end{vmatrix}=0\end{split}\\
\\
\begin{vmatrix}
\left|\boldsymbol{x}\right|&x&y&z&1\\
\left|\boldsymbol{a}\right|-\left|\boldsymbol{x}\right|&x_1-x&y_1-y&z_1-z&0\\
\left|\boldsymbol{b}\right|-\left|\boldsymbol{x}\right|&x_2-x&y_2-y&z_2-z&0\\
\left|\boldsymbol{c}\right|-\left|\boldsymbol{x}\right|&x_3-x&y_3-y&z_3-z&0\\
\left|\boldsymbol{d}\right|-\left|\boldsymbol{x}\right|&x_4-x&y_4-y&z_4-z&0\\
\end{vmatrix}=0\\
\\
\begin{vmatrix}
\left|\boldsymbol{x}\right|&x&y&z&1\\
\left|\boldsymbol{a}\right|&x_1&y_1&z_1&1\\
\left|\boldsymbol{b}\right|&x_2&y_2&z_2&1\\
\left|\boldsymbol{c}\right|&x_3&y_3&z_3&1\\
\left|\boldsymbol{d}\right|&x_4&y_4&z_4&1\\
\end{vmatrix}=0\\
\end{gather*}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-1-11 19:42
回复 4# 青青子衿
明白了,谢谢

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit