Last edited by hbghlyj 2022-1-8 23:29(Solid Geometry, P M Cohn, Library of Mathematics, Exercise on chapter 4, problem 8, page 49)
经过四个不共面的点$a,b,c,d$的球的方程为\begin{align*}(|a|^2-|x|^2)[b-x,c-x,d-x]&-(|b|^2-|x|^2)[a-x,c-x,d-x]\\&+(|c|^2-|x|^2)[a-x,b-x,d-x]-(|d|^2-|x|^2)[a-x,b-x,c-x]=0\end{align*}$a,b,c,d$满足这个方程,然后如何证明呢