Forgot password?
 Register account
View 292|Reply 0

欧拉数 行列式

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-1-12 00:08 |Read mode
$$\frac{1}{\cos{x}}=\sum_{n=0}^{\infty}{\frac{(-1)^{n}{\rm{E}}_{2n}x^{2n}}{(2n)!}}\quad , \quad  |x|<\frac{\pi}{2}$$其中${\rm E}_{2n}$是偶数项的欧拉数.证明:对$n=0 , 1, \dots$有$${\rm E}_{2n}=(-1)^n(2n)!\left|{\begin{array}{ccccccc} \frac{1}{2!} & 1 & 0 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{4!} & \frac{1}{2!} & 1 & 0 & \cdots & 0 & 0\\ \\ \frac{1}{6!} & \frac{1}{4!} & \frac{1}{2!} & 1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ \\ \frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \frac{1}{(2n-8)!} & \cdots & \frac{1}{2!} & 1\\\\ \frac{1}{(2n)!} &\frac{1}{(2n-2)!} & \frac{1}{(2n-4)!} & \frac{1}{(2n-6)!} & \cdots & \frac{1}{4!} & \frac{1}{2!}\end{array}}\right|$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:00 GMT+8

Powered by Discuz! star

Processed in 0.074739 second(s), 22 queries

× Quick Reply To Top Edit