Forgot password?
 Register account
View 315|Reply 1

帕斯卡矩阵

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-1-12 04:53 |Read mode
wiki
矩阵$L,U,S$的非零元素是下面的二项式系数($0\le i,j\le n$):
${\displaystyle L_{ij}={i \choose j}={\frac {i!}{j!(i-j)!}},j\leq i}$
${\displaystyle U_{ij}={j \choose i}={\frac {j!}{i!(j-i)!}},i\leq j}$
${\displaystyle S_{ij}={i+j \choose i}={i+j \choose j}={\frac {(i+j)!}{i!j!}}}$
例子:
${\displaystyle L_{5}={\begin{pmatrix}1&0&0&0&0\\1&1&0&0&0\\1&2&1&0&0\\1&3&3&1&0\\1&4&6&4&1\end{pmatrix}}\,\,\,}$
${\displaystyle U_{5}={\begin{pmatrix}1&1&1&1&1\\0&1&2&3&4\\0&0&1&3&6\\0&0&0&1&4\\0&0&0&0&1\end{pmatrix}}\,\,\,}$
${\displaystyle S_{5}={\begin{pmatrix}1&1&1&1&1\\1&2&3&4&5\\1&3&6&10&15\\1&4&10&20&35\\1&5&15&35&70\end{pmatrix}}}$
证明关系式:$S_n = L_nU_n$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-1-12 04:56
对于$i<j$,为证明$\sum_{k=0}^i\binom ik\binom jk=\binom{i+j}i$,
考虑$(1+x)^i(1+x^{-1})^j=(1+x)^{i+j}x^{-j}$,左边的常数项是$\sum_{k=0}^i\binom ik\binom jk$,右边的常数项是$\binom{i+j}j$.
$i>j$时同理.

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit