Forgot password?
 Create new account
View 282|Reply 1

求$\lim_{x \to 0}\frac {ax-\sin x}{\int_b^x\frac {\ln (1+t^3)}t\rm dt}$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-1-14 12:15:10 |Read mode
源自知乎提问


题:求非负实数 $a,b$ 的值,使 $\lim_{x \to 0}\frac {ax-\sin x}{\int_b^x\frac {\ln (1+t^3)}{t}\mathrm dt}=\frac 12.$

注意到是 $\frac 00$ 型未定式极限处理,分母中被积函数 $\color{red}{\frac {\ln (1+t^3)}{t}>0},$ 依题必有

$\lim_{x \to 0}\int_b^x\frac {\ln (1+t^3)}{t}\mathrm dt=0,$ 于是 $b=0.$

从而

\begin{align*} \lim_{x \to 0}\frac {ax-\sin x}{\int_0^x\frac {\ln (1+t^3)}{t}\mathrm dt} &=\lim_{x \to 0}\frac {a-\cos x}{\frac {\ln (1+x^3)}{x}}\\[1em] &=\color{red}{\lim_{x \to 0}\frac {a-\cos x}{x^2}}\\[1em] &=\frac 12\ne 0 \end{align*}

于是 $a=1.$

精简版:只需要看红字——先一洛必达法则,后一等价无穷小.

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2022-3-14 14:23:59
源自知乎提问


变限积分+定积分性质



: $\lim_{x\to 0^+}\frac {\int_0^x\sqrt {x-t}{~}\mathrm e^t \mathrm dt}{\sqrt {x^3}}.$


依 $\int_a^b f(x)\mathrm dx=\int_a^b f(a+b-x)\mathrm dx$ 有

\begin{align*} \lim_{x\to 0^+}\frac {\int_0^x\sqrt {x-t}{~}\mathrm e^t\mathrm dt}{\sqrt {x^3}} &=\lim_{x\to 0^+}\frac {\int_0^x\sqrt {x-(0+x-t)}{~}\mathrm e^{0+x-t}\mathrm dt}{\sqrt {x^3}}\\[1em] &=\lim_{x\to 0^+}\frac {\mathrm e^x\int_0^x\sqrt {t}{~}\mathrm e^{-t}\mathrm dt}{\sqrt {x^3}}\\[1em] &=\lim_{x\to 0^+}\mathrm e^x\cdot \lim_{x\to 0^+}\frac {\int_0^x\sqrt {t}{~}\mathrm e^{-t}\mathrm dt}{x^{\frac 32}}\\[1em] \xlongequal{\text{L'Hospital}}&=1\cdot \lim_{x\to 0^+}\frac {\sqrt {x}{~}\mathrm e^{-x}}{3/2\cdot \sqrt x}\\[1em] &=\frac 23. \end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 14:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list