Forgot password?
 Register account
View 338|Reply 0

分部积分法 $\int \bm{\csc x}\mathrm dx$

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2022-1-14 20:25 |Read mode
源自知乎提问,这个方式我还是凑了好一久的~~







以 $\int \bm{\csc x}\mathrm dx$ 分部积分法展示三角函数的美,希望能感觉得三角到美~希望是

\begin{align*} \int \csc x \mathrm dx &= \int \csc x \cot x \cdot \tan x\mathrm dx\\[1em] &=-\int \tan x\mathrm d\csc x\\[1em] &=-\sec x+\int \csc x \sec^2 x \mathrm dx\\[1em] &=-\sec x-\int \frac 1 {\sin^2 x\cos^2x} \mathrm d\cos x\\[1em] &=-\sec x-\int \left(\frac 1{1-\cos^2 x} +\frac 1{\cos^ 2x}\right)\mathrm d\cos x\\[1em] &=\frac 12 \ln \frac {1-\cos x}{1+\cos x}+C. \end{align*}



所用同角三角函数恒等公式

$$\sin x\csc x=1,\ \cos x\sec x=1,\ \tan x\cot x=1,\ $ $\tan x\csc x=\sec x.$$

所用微分公式

$$\mathrm d\tan x=\sec^2 x\mathrm dx,\ \mathrm d\csc x=-\csc x\cot x\mathrm dx.$$

所用积分表

$$\int \frac 1{x^2-a^2}\mathrm dx=\frac 1{2a}\ln\left|\frac{x-a}{x+a}\right|+C.$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:17 GMT+8

Powered by Discuz!

Processed in 0.033766 second(s), 21 queries

× Quick Reply To Top Edit