Forgot password?
 Register account
View 384|Reply 2

[函数] 一个函数导数题的问题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-1-16 23:28 |Read mode
Last edited by lemondian 2022-1-17 15:05已知函数$f(x)=\frac{1}{a}e^x-\sqrt{1+x}$,其中$a\inR$且$a\ne0$。
(1)设$a>0$,过点$A(-1,-\frac{1}{2})$作曲线$C:y=f(x)$的切线(斜率存在),求切线的斜率;
(2)证明:当$a=1$或$0<a\leqslant \frac{2}{e}$时,$f(x)\geqslant \frac{1}{2}ax(x\geqslant -1)$。
1.问题(2)如何证明?
2.问题(2)中,若将$a$的范围改为$0<a\leqslant 1$,结论是否成立?如何证明?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-1-17 15:06
回复 1# lemondian
??

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2022-1-17 16:58
必要性探路 x=0带入 就得到a范围了。 这题很像浙江卷的那个压轴题的弱化版

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit