Forgot password?
 Register account
View 332|Reply 0

[函数] 利用三角和差化积求值

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2022-1-18 21:14 |Read mode
源自知乎提问




:若 $\sin\alpha-\cos \beta=3\cos\alpha-3\sin\beta,$ 且 $\sin(\alpha+\beta)\ne 1,$ 则 $\sin(\alpha-\beta)=$ _______.


改为小题了,即不需要过程版.

令 $\alpha=-\beta=x,$ 于是条件化为 $\tan x=-2,$ 所求为 $\sin 2x=\frac {2\cdot (-2)}{1+4}=-\frac 45.$

怎么肯定是对的?特殊方法,不对怎么办?得认.

还是简单的写个严谨过程吧.

\begin{gather*} \sin\alpha-\cos \beta=3\cos\alpha-3\sin\beta\\[1em] \sin\alpha+\sin\left(\beta-\frac {\pi}2\right) =3\sin\left(\frac {\pi}2-\alpha\right)-3\sin\beta\\[1em] 2\sin\left(\frac {\alpha+\beta}2-\frac {\pi}4\right)\cos \left(\frac {\alpha-\beta}2+\frac {\pi}4\right)=6\cos \left(\frac {\pi}4-\frac {\alpha-\beta}2\right)\sin\left(\frac {\pi}4-\frac {\alpha+\beta}2\right)\\[1em] \cos \left(\frac {\alpha-\beta}2+\frac {\pi}4\right)=-3\cos \left(\frac {\pi}4-\frac {\alpha-\beta}2\right)\\[1em] \tan \left(\frac {\alpha-\beta}2+\frac {\pi}4\right)=-\frac 13\\[1em] \tan \frac {\alpha-\beta}2=-2\\[1em] \Rightarrow \ \sin(\alpha-\beta)=-\frac 45.  \end{gather*}



三角和差化积公式

\begin{gather*}\sin x+\sin y=2\sin\frac{x+y}2\cos\frac{x-y}2,\\[1em]  \sin x-\sin y=2\cos\frac{x+y}2\sin\frac{x-y}2,\\[1em]  \cos x+\cos y=2\cos\frac{x+y}2\cos\frac{x-y}2,\\[1em]  \cos x-\cos y=-2\sin\frac{x+y}2\sin\frac{x-y}2,\end{gather*}



PS:记忆口诀:正和正在前,正差正后迁;余和余相见,余差翻了天.

解释,如“正差正后迁”,第二个公式,正弦的差,右边正弦在后;再如“余和余相见”第三个公式,余弦的和,右边全是余弦,基此联想一,四公式.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 08:24 GMT+8

Powered by Discuz!

Processed in 0.019217 second(s), 21 queries

× Quick Reply To Top Edit