|
original poster
TSC999
posted 2022-2-6 18:37
Last edited by TSC999 2022-2-6 20:51求 E 点坐标的程序代码:- Clear["Global`*"];
- h = a^2 + b^2 + c^2;
- \!\(\*OverscriptBox[\(h\), \(_\)]\) = 1/a^2 + 1/b^2 + 1/c^2;
- Timing[Simplify[
- Solve[{Sqrt[(a^2 - b^2) (1/a^2 - 1/b^2)] Sqrt[(b^2 - e) (1/b^2 -
- \!\(\*OverscriptBox[\(e\), \(_\)]\))] == (a^2 - c^2) (1/a^2 -
- 1/c^2) - (b^2 - c^2) (1/b^2 - 1/c^2), (h - b^2)/(
- \!\(\*OverscriptBox[\(h\), \(_\)]\) - 1/b^2) == (e - b^2)/(
- \!\(\*OverscriptBox[\(e\), \(_\)]\) - 1/b^2)}, {e}, {
- \!\(\*OverscriptBox[\(e\), \(_\)]\)}]]]
Copy the Code 求 F 点坐标的程序代码:- Clear["Global`*"];
- h = a^2 + b^2 + c^2;
- \!\(\*OverscriptBox[\(h\), \(_\)]\) = 1/a^2 + 1/b^2 + 1/c^2;
- Timing[Simplify[
- Solve[{Sqrt[(a^2 - c^2) (1/a^2 - 1/c^2)] Sqrt[(c^2 - f) (1/c^2 -
- \!\(\*OverscriptBox[\(f\), \(_\)]\))] == (a^2 - b^2) (1/a^2 -
- 1/b^2) - (b^2 - c^2) (1/b^2 - 1/c^2), (h - c^2)/(
- \!\(\*OverscriptBox[\(h\), \(_\)]\) - 1/c^2) == (f - c^2)/(
- \!\(\*OverscriptBox[\(f\), \(_\)]\) - 1/c^2)}, {f}, {
- \!\(\*OverscriptBox[\(f\), \(_\)]\)}]]]
Copy the Code 上面程序解出的 E、F 是未化简坐标,消除根式后正负号如何取? 可通过数字验证来判断。根式消除后,下一步可用软件来证明主帖中的史勇公式:
|
|