Forgot password
 Register account
View 306|Reply 0

柯西不等式积分形式的应用

[Copy link]

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2022-2-5 22:43 |Read mode
源自知乎提问,似乎大家不太关心取“=”





题:设非负函数 $f\in \mathrm R[a,b],$ 证明不等式

$$\left(\int_a^b f(x)\cos x \mathrm{~d}x\right)^2+\left(\int_a^b f(x)\sin x\mathrm \ dx\right)^2\leqslant\left(\int_a^b f(x) \mathrm {~d}x\right)^2.$$

学习了其它答主的解法,直接给本题一个文字过程.

由柯西不等式积分形式有

$$\left(\int_a^b f(x) \mathrm{~d}x\right) \left(\int_a^b f(x)\cos^2 x \mathrm{~d}x\right)\geqslant \left(\int_a^b f(x)\cos x \mathrm{~d}x\right)^2,$$

同理有

$$\left(\int_a^b f(x) \mathrm{~d}x\right) \left(\int_a^b f(x)\sin^2 x \mathrm{~d}x\right)\geqslant \left(\int_a^b f(x)\sin x \mathrm{~d}x\right)^2,$$

两式相加即证.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 14:00 GMT+8

Powered by Discuz!

Processed in 0.042450 second(s), 21 queries

× Quick Reply To Top Edit