Forgot password?
 Register account
View 381|Reply 0

珠子在转动的杆上 Euler-Lagrange equation

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-2-6 10:46 |Read mode
Last edited by hbghlyj 2022-2-6 11:59 r ω m θ 这份力学讲义 A bead slides on a wire rotating at constant angular speed ω in a horizontal plane Polar coordinates $\underline{\mathbf{v}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}$ $L=T-U$ with $U=0$ $L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}$ Single variable $q_{k} \rightarrow r$ E-L $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=\frac{\partial L}{\partial \dot{r}}$ $\frac{\partial L}{\partial \dot{r}}=m \dot{r} \rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=m \ddot{r}$ $\frac{\partial L}{\partial r}=m r \omega^{2}$ E-L $\rightarrow m \ddot{r}-m r \omega^{2}=0$ Central force $F_{c e n t r a l}=m \omega^{2} r$ $r=A e^{\omega t}+B e^{-\omega t}$ What happens if the angular speed is now a free coordinate? $L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}$ Two variables $q_{k} \rightarrow r, \theta$ $r$ variable: as before $\rightarrow m \ddot{r}-m r \dot{\theta}^{2}=0$ $\theta$ variable: $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}$ $\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}$ $\frac{\partial L}{\partial \theta}=0$ E-L $: m r^{2} \ddot{\theta}=\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0$ $\rightarrow$ Conservation of angular momentum

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 08:27 GMT+8

Powered by Discuz!

Processed in 0.015639 second(s), 22 queries

× Quick Reply To Top Edit