Forgot password?
 Create new account
View 279|Reply 0

珠子在转动的杆上 Euler-Lagrange equation

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-6 10:46:16 |Read mode
Last edited by hbghlyj at 2022-2-6 11:59:00 r ω m θ 这份力学讲义 A bead slides on a wire rotating at constant angular speed ω in a horizontal plane Polar coordinates $\underline{\mathbf{v}}=\dot{r} \underline{\hat{\mathbf{r}}}+r \dot{\theta} \underline{\hat{\theta}}$ $L=T-U$ with $U=0$ $L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \omega^{2}$ Single variable $q_{k} \rightarrow r$ E-L $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=\frac{\partial L}{\partial \dot{r}}$ $\frac{\partial L}{\partial \dot{r}}=m \dot{r} \rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)=m \ddot{r}$ $\frac{\partial L}{\partial r}=m r \omega^{2}$ E-L $\rightarrow m \ddot{r}-m r \omega^{2}=0$ Central force $F_{c e n t r a l}=m \omega^{2} r$ $r=A e^{\omega t}+B e^{-\omega t}$ What happens if the angular speed is now a free coordinate? $L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\theta}^{2}$ Two variables $q_{k} \rightarrow r, \theta$ $r$ variable: as before $\rightarrow m \ddot{r}-m r \dot{\theta}^{2}=0$ $\theta$ variable: $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{\partial L}{\partial \theta}$ $\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}$ $\frac{\partial L}{\partial \theta}=0$ E-L $: m r^{2} \ddot{\theta}=\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0$ $\rightarrow$ Conservation of angular momentum

手机版Mobile version|Leisure Math Forum

2025-4-20 22:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list