Forgot password
 Register account
View 429|Reply 5

[函数] 三角恒等式

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2022-2-11 13:22 |Read mode
下面三角恒等式,有什么证法?
$cosAcosB+cosBcosC+cosCcosA=4sin^2\frac{A}{2}sin^2\frac{B}{2}sin^2\frac{C}{2}+4cos^2\frac{A}{2}cos^2\frac{B}{2}cos^2\frac{C}{2}-1$

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2022-2-11 13:38
Last edited by Tesla35 2022-2-11 13:44回复 1# lemondian

已知恒等式
$\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$;

$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$;

$(\sin A+\sin B+\sin C)^2+(\cos A+\cos B+\cos C-1)^2=16(\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2})^2+16(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2})^2$.

上式左边
$=4+2(\sin A\sin B+\sin B\sin C+\sin C\sin A+\cos A\cos B+\cos B\cos C+\cos C\cos A-\cos A-\cos B-\cos C)$

又因为
$-\cos A=\cos(B+C)=\cos B\cos C-\sin A\sin B$,

$-\cos B=\cos(C+A)=\cos C\cos A-\sin C\sin A$,

$-\cos C=\cos(A+B)=\cos A\cos B-\sin A\sin B$.
代入上式得
$4+4(\cos A\cos B+\cos B\cos C+\cos C\cos A)
=16(\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2})^2+16(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2})^2$

原式得证.

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-2-11 14:16
下面三角恒等式,有什么证法?
$cosAcosB+cosBcosC+cosCcosA=4sin^2\frac{A}{2}sin^2\frac{B}{2}sin^2\frac{C}{2}+4cos^2\frac{A}{2}cos^2\frac{B}{2}cos^2\frac{C}{2}-1$
lemondian 发表于 2022-2-11 13:22
左`=c^2o^2s^2(AB+BC+CA)`
右`=(s^3i^3n^6+c^3o^3s^6)\frac{ABC}2-1`
左`\ne`右

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-2-11 15:12
回复 3# kuing

你是说需要$A+B+C=\pi$,特斯拉35 过程才成立?

===
bug ID 中的35 不能分开吧?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-2-11 15:26
回复 4# isee

我是说$cos\ne\cos$

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-2-11 22:09
回复 5# kuing

这真的是真的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:18 GMT+8

Powered by Discuz!

Processed in 0.012176 seconds, 24 queries