|
Last edited by Tesla35 2022-2-11 13:44回复 1# lemondian
已知恒等式
$\sin A+\sin B+\sin C=4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$;
$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$;
$(\sin A+\sin B+\sin C)^2+(\cos A+\cos B+\cos C-1)^2=16(\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2})^2+16(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2})^2$.
上式左边
$=4+2(\sin A\sin B+\sin B\sin C+\sin C\sin A+\cos A\cos B+\cos B\cos C+\cos C\cos A-\cos A-\cos B-\cos C)$
又因为
$-\cos A=\cos(B+C)=\cos B\cos C-\sin A\sin B$,
$-\cos B=\cos(C+A)=\cos C\cos A-\sin C\sin A$,
$-\cos C=\cos(A+B)=\cos A\cos B-\sin A\sin B$.
代入上式得
$4+4(\cos A\cos B+\cos B\cos C+\cos C\cos A)
=16(\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2})^2+16(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2})^2$
原式得证. |
Rate
-
View Rating Log
|