|
本帖最后由 hbghlyj 于 2022-3-27 03:18 编辑 这份讲义的第46页
2.1.3 Van der Vaerden's example
The following example of a continuous function on $\mathbb{R}$ which is nowhere differentiable was constructed by B. L. Van der Waerden [For your reading - I don't think I'll have time to work through this example].
Let us begin with a simple continuous function
$$
h(x)=\left\{\begin{array}{cc}
x &\text { if } 0 \leq x \leq 1 \\
2-x &\text { if } 1 \leq x \leq 2
\end{array}\right.
$$
and extend $h$ to be a periodic function with period 2, i.e. $h(x+2)=h(x)$ for $x \in \mathbb{R}$. Then $h$ is continuous on $\mathbb{R}$. Consider the series
$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} h\left(4^{n} x\right)
$$
By the Weierstrass M-test, $\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} h\left(4^{n} x\right)$ converges uniformly in $\mathbb{R}$, thus $f$ is continuous on $\mathbb{R}$ [Theorem 1.4.11] and
$$
|f(x)| \leq \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}=4 \quad \text { for every } x \in \mathbb{R} .
$$
Let $x \in \mathbb{R}, m \in \mathbb{N}$ and set $k=\left[4^{m} x\right]$ the integer part of $4^{m} x: k$ is the unique integer such that
$$
k \leq 4^{m} x<k+1
$$
Let $\alpha_{m}=4^{-m} k$ and $\beta_{m}=4^{-m}(k+1)$. Obviously
$$
\alpha_{m} \leq x<\beta_{m}
$$
and
$$
\beta_{m}-\alpha_{m}=\frac{1}{4^{m}} \rightarrow 0 \text { as } m \rightarrow \infty
$$
In particular, $\lim _{m \rightarrow \infty} \alpha_{m}=\lim _{m \rightarrow \infty} \beta_{m}=x$. We are going to show that
$$
\lim _{m \rightarrow \infty} \frac{f\left(\beta_{m}\right)-f\left(\alpha_{m}\right)}{\beta_{m}-\alpha_{m}}
$$
does not exist, so that $f$ is not differentiable at $x$. Since $x$ is arbitrary, $f$ is nowhere differentiable.
If $n>m$, then $4^{n} \beta_{m}-4^{n} \alpha_{m}$ is an even number, and if $n \leq m$ then there is no integer between $4^{n} \beta_{m}$ and $4^{n} \alpha_{m}$. Therefore
$$
\left|h\left(4^{n} \beta_{m}\right)-h\left(4^{n} \alpha_{m}\right)\right|=\left\{\begin{array}{c}
0, \quad \text { if } n>m \\
4^{n-m}, \text { if } n \leq m
\end{array}\right.
$$
Hence
$$
\begin{aligned}
f\left(\beta_{m}\right)-f\left(\alpha_{m}\right) &=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}\left(h\left(4^{n} \beta_{m}\right)-h\left(4^{n} \alpha_{m}\right)\right) \\
&=\sum_{n=0}^{m}\left(\frac{3}{4}\right)^{n}\left(h\left(4^{n} \beta_{m}\right)-h\left(4^{n} \alpha_{m}\right)\right)
\end{aligned}
$$
so that
$$
\begin{aligned}
\left|f\left(\beta_{m}\right)-f\left(\alpha_{m}\right)\right| & \geq\left(\frac{3}{4}\right)^{m}-\sum_{n=0}^{m-1}\left(\frac{3}{4}\right)^{n}\left|h\left(4^{n} \beta_{m}\right)-h\left(4^{n} \alpha_{m}\right)\right| \\
&=\left(\frac{3}{4}\right)^{m}-\sum_{n=0}^{m-1} 4^{n-m}\left(\frac{3}{4}\right)^{n} \\
&=\left(\frac{3}{4}\right)^{m}-\frac{1}{4^{m}} \frac{3^{m}-1}{2} \\
&=\frac{1}{2}\left(\frac{3}{4}\right)^{m}+\frac{1}{2} \frac{1}{4^{m}} .
\end{aligned}
$$
Therefore
$$
\frac{\left|f\left(\beta_{m}\right)-f\left(\alpha_{m}\right)\right|}{\beta_{m}-\alpha_{m}} \geq \frac{3^{m}+1}{2} \rightarrow \infty \text { as } m \rightarrow \infty
$$
and it follows that $\lim \frac{f\left(\beta_{m}\right)-f\left(\alpha_{m}\right)}{\beta_{m}-\alpha_{m}}$ does not exist. Hence $f$ is not differentiable at any point $x$. |
|