|
色k
Posted 2022-2-17 22:49
唉,永远都要把三角函数给扶正
`Asin^rxcos^sx\ne A\sin^rx\cos^sx`
令 `a=\sin^2x`, `b=\cos^2x`, `a`, `b\geqslant0`, `a+b=1`,则
\begin{align*}
f(x)&=A\sin^rx\cos^sx,\\
\frac{f(x)^2}{A^2}&=a^rb^s,\\
\frac{f(x)^2}{A^2r^rs^s}&=\left( \frac ar \right)^r\left( \frac bs \right)^s,\\
\left( \frac{f(x)^2}{A^2r^rs^s} \right)^{1/(r+s)}&=\left( \frac ar \right)^{r/(r+s)}\left( \frac bs \right)^{s/(r+s)}\leqslant\frac r{r+s}\cdot\frac ar+\frac s{r+s}\cdot\frac bs=\frac1{r+s},\\
f(x)^2&\leqslant\frac{A^2r^rs^s}{(r+s)^{r+s}},
\end{align*}
当 `a/r=b/s` 取等。 |
|