Forgot password?
 Register account
View 384|Reply 3

[不等式] 三角不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-2-19 16:13 |Read mode
Last edited by lemondian 2022-2-19 23:02在$\triangle ABC$中,设其外接圆半径及三个旁切圆半径分别为$R,r_a,r_b,r_c$,求证:$\sin\frac{B}{2}+\sin\frac{A}{2}+\sin\frac{C}{2}\geqslant \frac{1}{\sqrt{6R}}(\sqrt{r_a}+\sqrt{r_b}+\sqrt{r_c})$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-2-20 00:00
好久没撸这种不等式鸟,技巧都不会用鸟,先暴力搞下吧……

证明:要证原不等式,只需证以下两个不等式
\begin{align*}
\sum\sin^2\frac A2&\geqslant\frac{r_a+r_b+r_c}{6R},\quad(1)\\
\sum\sin\frac A2\sin\frac B2&\geqslant\frac{\sqrt{r_ar_b}+\sqrt{r_br_c}+\sqrt{r_cr_a}}{6R},\quad(2)
\end{align*}
作内切圆代换 $a=y+z$, $b=z+x$, $c=x+y$, $x$, $y$, $z>0$,则有
\begin{align*}
\sin\frac A2&=\sqrt{\frac{yz}{(z+x)(x+y)}},\\
\frac{r_a}R&=\frac{4yz(x+y+z)}{(x+y)(y+z)(z+x)},
\end{align*}
于是
\[(1)\iff\sum\frac{yz}{(z+x)(x+y)}\geqslant\frac{2(yz+zx+xy)(x+y+z)}{3(x+y)(y+z)(z+x)},\]
去分母即 `3\sum(y+z)yz\geqslant2(yz+zx+xy)(x+y+z)`,显然成立,式 (1) 得证;
\begin{align*}
(2)&\iff\sum\frac{z\sqrt{xy}}{(x+y)\sqrt{(y+z)(z+x)}}\geqslant\frac23\sum\frac{z\sqrt{xy}(x+y+z)}{(x+y)(y+z)(z+x)}\\
&\iff\sum\sqrt{z(y+z)(z+x)}\geqslant\frac23(x+y+z)\sum\sqrt z\\
&\iff\sum\sqrt z\left( \sqrt{(y+z)(z+x)}-\frac{x+y+2z}2 \right)\geqslant\sum\left( \frac23(x+y+z)-\frac{x+y+2z}2 \right)\sqrt z\\
&\iff\sum\sqrt z\frac{-\frac{(x-y)^2}4}{\sqrt{(y+z)(z+x)}+\frac{x+y+2z}2}\geqslant\sum\frac{x+y-2z}6\sqrt z\\
&\iff\sum\frac{3\sqrt z(x-y)^2}{2\sqrt{(y+z)(z+x)}+x+y+2z}\leqslant\sum(x-y)\bigl(\sqrt x-\sqrt y\bigr)=\sum\frac{(x-y)^2}{\sqrt x+\sqrt y},
\end{align*}
对左边分母用柯西及均值有
\begin{align*}
2\sqrt{(y+z)(z+x)}+x+z+y+z&\geqslant2\bigl( \sqrt{yz}+\sqrt{zx} \bigr)+2\sqrt{xz}+2\sqrt{yz}\\
&=4\sqrt z\bigl( \sqrt x+\sqrt y \bigr),
\end{align*}

\[\sum\frac{3\sqrt z(x-y)^2}{2\sqrt{(y+z)(z+x)}+x+y+2z}\leqslant\sum\frac{3(x-y)^2}{4\bigl( \sqrt x+\sqrt y \bigr)}\leqslant\sum\frac{(x-y)^2}{\sqrt x+\sqrt y},\]
所以式 (2) 得证。

然后 `(1)+2\times(2)` 开荒即得原不等式。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-2-20 12:12
回复 2# kuing
还在看,好难懂!
等号是等边三角边时成立吧?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-2-20 16:11
回复 3# lemondian

嗯,等边取等。
哪里看不懂,你可以问。

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit