Forgot password
 Register account
View 340|Reply 3

$\lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x}.$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-2-23 23:37 |Read mode
源自知乎提问,复合函数有点多



题: $\lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x}.$

洛必达法则亦达,以下 $\exp f(x)=\mathrm e^{f(x)}$

\begin{align*} \lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x} &=\lim_{x\to 0^+}\exp\frac {\ln \cos\sqrt x}x\\[1em] &=\exp\lim_{x\to 0^+}\frac {\ln \cos\sqrt x}x\\[1em] \xlongequal{\text{L'Hospital}}&=\exp\lim_{x\to 0^+}\frac {\frac 1{\cos\sqrt x}\cdot (\cos\sqrt x)'}1\\[1em] &=\exp\lim_{x\to 0^+}\frac{\frac 1{\cos\sqrt x}\cdot (-\sin\sqrt x)\cdot (\sqrt x)'}1\\[1em] &=\exp\lim_{x\to 0^+}\frac 1{\cos\sqrt x}\cdot \frac {-\sin\sqrt x}{2\sqrt x}\\[1em] &=\frac 1{\sqrt {\mathrm e}} \end{align*}

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2022-2-24 10:48
回复 1# isee

\[\lim_{x\to 0^+}(\cos(\sqrt{x}))^{\frac{1}{x}}=\lim_{x\to 0^+}(1-\frac{x}{2}+o(x))^{\frac{1}{x}}=e^{-\frac{1}{2}}\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-2-24 13:54

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2022-2-24 14:17
回复 3# kuing


泰勒展开是一样的,我还打算就在那帖回的。

不过,主楼偏复合的导数,所以单独成一帖了。

不过,现在有了战巡补充,真可以合一起,也是行的。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:00 GMT+8

Powered by Discuz!

Processed in 0.018737 seconds, 26 queries