Forgot password?
 Register account
View 336|Reply 3

$\lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x}.$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-2-23 23:37 |Read mode
源自知乎提问,复合函数有点多



题: $\lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x}.$

洛必达法则亦达,以下 $\exp f(x)=\mathrm e^{f(x)}$

\begin{align*} \lim_{x\to 0^+}(\cos\sqrt x)^{\frac 1x} &=\lim_{x\to 0^+}\exp\frac {\ln \cos\sqrt x}x\\[1em] &=\exp\lim_{x\to 0^+}\frac {\ln \cos\sqrt x}x\\[1em] \xlongequal{\text{L'Hospital}}&=\exp\lim_{x\to 0^+}\frac {\frac 1{\cos\sqrt x}\cdot (\cos\sqrt x)'}1\\[1em] &=\exp\lim_{x\to 0^+}\frac{\frac 1{\cos\sqrt x}\cdot (-\sin\sqrt x)\cdot (\sqrt x)'}1\\[1em] &=\exp\lim_{x\to 0^+}\frac 1{\cos\sqrt x}\cdot \frac {-\sin\sqrt x}{2\sqrt x}\\[1em] &=\frac 1{\sqrt {\mathrm e}} \end{align*}

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-2-24 10:48
回复 1# isee

\[\lim_{x\to 0^+}(\cos(\sqrt{x}))^{\frac{1}{x}}=\lim_{x\to 0^+}(1-\frac{x}{2}+o(x))^{\frac{1}{x}}=e^{-\frac{1}{2}}\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-2-24 13:54

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2022-2-24 14:17
回复 3# kuing


泰勒展开是一样的,我还打算就在那帖回的。

不过,主楼偏复合的导数,所以单独成一帖了。

不过,现在有了战巡补充,真可以合一起,也是行的。

Mobile version|Discuz Math Forum

2025-6-5 18:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit