Forgot password?
 Create new account
View 192|Reply 2

$Tx=(\frac{\xi_1}{1},\cdots,\frac{\xi_n}{n},\cdots)$,求$\|T\|$

[Copy link]

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

abababa Posted at 2022-2-25 16:56:17 |Read mode
$T$是平方可和数列上的线性算子,满足$Tx=(\frac{\xi_1}{1},\cdots,\frac{\xi_n}{n},\cdots)$,其中$x$是平方可和数列$(\xi_1,\cdots,\xi_n,\cdots)$。求$\|T\|$。
我算出来小于等于那部分,怎么找到一个元素让它大于等于呢?
\begin{align*}
\|T\|
&=\sup_{\|x\|\neq0}\frac{\|Tx\|}{\|x\|}
=\sup\frac{(\sum_{k=1}^{\infty}(\xi_k \cdot \frac{1}{k})^2)^{\frac{1}{2}}}{(\sum_{k=1}^{\infty}\xi_k^2)^{\frac{1}{2}}}\\
&\le\sqrt{\frac{(\sum_{k=1}^{\infty}\xi_k \cdot \frac{1}{k})^2}{\sum_{k=1}^{\infty}\xi_k^2}}
\xlongequal{\text{Cauchy不等式}} \sqrt{\frac{\sum_{k=1}^{\infty}\xi_k^2 \cdot \sum_{k=1}^{\infty}(\frac{1}{k})^2}{\sum_{k=1}^{\infty}\xi_k^2}}
=\frac{\pi}{\sqrt{6}}
\end{align*}

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-2-25 20:47:24
$\|Tx\|\leq \|x\|$

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

 Author| abababa Posted at 2022-2-25 20:57:05
Last edited by abababa at 2022-2-25 21:20:00回复 2# Czhang271828
这是为什么呢?如果这样的话,那就有$\|T\|\le1$,怎么证明呢?

谢谢,我明白了,因为对任意的$n$都有$(\frac{\xi_n}{n})^2\le\xi_n^2$,所以$\sum_{k=1}^{\infty}(\frac{\xi_k}{k})^2\le\sum_{k=1}^{\infty}\xi_k^2$,这样把分子放缩成和分母一样,就得到$\|T\|\le1$了,然后再取$x_0=(1,0,0,\cdots)$就有$\|T\|\ge1$,最后就是$\|T\|=1$。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list