Forgot password
 Register account
View 369|Reply 3

[组合] Glaisher定理 整数划分

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-2-27 09:17 |Read mode
维基百科
将$N$划分为不被$d$整除的整数相加的方法数,等于将$N$划分成$N=N_{1}+\cdots +N_{k}$使$N_i\geq N_{i+1}$,$N_i\geq N_{i+d-1}+1$的方法数,即,没有重复$d$次或更多次的加数.
当$d=2$时的情形是欧拉定理:将$N$分成不同的整数的方法数等于将$N$分成奇数的方法数.

证明
\begin{align*}&(1+x+x^2+\dots+x^{d-1})(1+x^2+x^4+\dots+x^{2d-2})\dots(1+x^k+x^{2k}+\dots+x^{kd-k})\dots
\\=&\frac{1-x^d}{1-x}\frac{1-x^{2d}}{1-x^2}\dots\frac{1-x^{kd}}{1-x^k}\dots
\\=&\prod_{d\ \nmid\ k}\frac1{1-x^k}\end{align*}

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-8-2 20:09
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-8-2 23:19
D. H. Lehmer (1946). "Two nonexistence theorems on partitions". Bull. Amer. Math. Soc. 52 (6): 538–544.

Hardy and Wright, Introduction to the theory of numbers, Oxford, 1938, chap. 19, where also can be found proofs of Euler's and Rogers' theorems.

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-8-3 15:46
hbghlyj 发表于 2022-8-2 23:19
本帖最后由 hbghlyj 于 2022-8-2 16:21 编辑 D. H. Lehmer (1946). "Two nonexistence theorems on partit ...
Hardy 的书西北古董咯. 推荐 Stanley 的 Enumerative Combinatorics. Vol 1 直接 Google, Vol 2 在 Z-lib 头里寻下.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:09 GMT+8

Powered by Discuz!

Processed in 0.066026 seconds, 22 queries