Forgot password?
 Register account
View 434|Reply 4

[几何] 求证一道几何题

[Copy link]

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

pkuhuping Posted 2022-3-7 11:35 |Read mode
这道题想了很久,没有想出来
请论坛里的高手帮忙看看,有没有好方法证明出来
1646623971(1).png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-7 14:10
我喜欢用复数法,以 `N` 为原点,用 `z_A` 表示点 `A` 对应的复数。

设那几个相等的角为 `\theta` 以及 `PB:AB=\lambda`,则
\begin{align*}
z_P-z_B&=(z_A-z_B)\cdot\lambda(\cos\theta+i\sin\theta),\\
z_Q-z_C&=(z_A-z_C)\cdot\lambda(\cos\theta-i\sin\theta),
\end{align*}
由 `z_B+z_C=0`,以上两式相加得
\begin{align*}
z_P+z_Q&=2\lambda z_A\cos\theta-\lambda(z_B-z_C)i\sin\theta\\
&=2\lambda\cos\theta\cdot\left( z_A-\frac{z_B-z_C}2i\tan\theta \right)\\
&=2\lambda\cos\theta\cdot(z_A-z_T),
\end{align*}
而 `z_P+z_Q=2z_M`,所以
\[z_M=\lambda\cos\theta\cdot(z_A-z_T),\]
所以 `MN\px AT` 兼且 `MN=\lambda\cos\theta\cdot AT`。

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| pkuhuping Posted 2022-3-8 10:11
回复 2# kuing

非常感谢,想问一下,有没有纯几何证法,我想很久了,没想到纯几何证法

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2022-3-8 19:11
想起了这帖:forum.php?mod=viewthread&tid=5609
或许有用,先放这儿,有空再想想。

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| pkuhuping Posted 2022-3-9 16:25
不一样,我这题还比较特殊

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit