Forgot password?
 Create new account
View 179|Reply 1

$\sum_{n=2}^∞\frac1{n(\ln n)^α}$的敛散性

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-8 23:14:55 |Read mode
$a_n=\frac1{n(\ln n)^α}$.求证:$\sum_{n=2}^∞a_n$当$α>1$时收敛;当$α≤1$时发散.

$\frac{a_n}{a_{n+1}}=\frac{n+1}{n}(\frac{\ln(n+1)}{\ln n})^{\alpha }=1+\frac{1}{n}+\frac{\alpha }{n\ln n}+o(\frac{1}{n\ln n})$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2022-3-9 11:32:56
Last edited by 战巡 at 2022-3-9 11:47:00回复 1# hbghlyj

对$\alpha\le 0$,明摆着就是发散的,没啥好证明的

对$\alpha>0$,明显$a_n$是递减的,会有
\[a_n>\int_{n}^{n+1}\frac{dx}{x\ln^\alpha(x)}>a_{n+1}\]

\[\int_{n-1}^{n}\frac{dx}{x\ln^\alpha(x)}>a_n>\int_{n}^{n+1}\frac{dx}{x\ln^\alpha(x)}\]
注意这个积分并不难,一般情况下($\alpha\ne 1$):
\[\int\frac{dx}{x\ln^{\alpha}(x)}=\frac{1}{(1-\alpha)\ln^{\alpha-1}(x)}+C\]
当$\alpha=1$时特别一点,变成
\[\int\frac{dx}{x\ln(x)}=\ln(\ln(x))+C\]

故此
\[\int_1^n\frac{dx}{x\ln^\alpha(x)}>\sum_{k=2}^n a_k>\int_2^{n+1}\frac{dx}{x\ln^\alpha(x)}\]
不过这里从$1$开始积不收敛,得改成这样:
\[a_2+\int_2^n\frac{dx}{x\ln^\alpha(x)}>\sum_{k=2}^n a_k>\int_2^{n+1}\frac{dx}{x\ln^\alpha(x)}\]
当$\alpha\ne 1$时,有
\[a_2+\frac{1}{(1-\alpha)}\left(\frac{1}{\ln^{\alpha-1}(n)}-\frac{1}{\ln^{\alpha-1}(2)}\right)>\sum_{k=2}^n a_k>\frac{1}{1-\alpha}\left(\frac{1}{\ln^{\alpha-1}(n+1)}-\frac{1}{\ln^{\alpha-1}(2)}\right)\]
这个很明显在$\alpha<1$时发散,在$\alpha>1$时收敛

而$\alpha=1$时,有
\[\sum_{k=2}^n a_k>\ln(\ln(n+1))-\ln(\ln(2))\]
当然发散

手机版Mobile version|Leisure Math Forum

2025-4-21 14:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list