|
矩阵$M=(m_{ij})$对θ的导数定义为(对各个分量求导)$$\frac{\partial \mathbf{M}}{\partial \theta}=\left(\begin{array}{cccc}\frac{\partial m_{11}}{\partial \theta} & \frac{\partial m_{12}}{\partial \theta} & \ldots & \frac{\partial m_{1 d}}{\partial \theta} \\ \frac{\partial m_{21}}{\partial \theta} & \frac{\partial m_{22}}{\partial \theta} & \ldots & \frac{\partial m_{2 d}}{\partial \theta} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial m_{n 1}}{\partial \theta} & \frac{\partial m_{n 2}}{\partial \theta} & \ldots & \frac{\partial m_{n d}}{\partial \theta}\end{array}\right)$$求证$$\frac{\partial}{\partial \theta} \mathbf{M}^{-1}=-\mathbf{M}^{-1} \frac{\partial \mathbf{M}}{\partial \theta} \mathbf{M}^{-1}$$证明(除了矩阵乘法不满足交换律之外,和$(f(x)^{-1})'=-f'(x)·f(x)^{-2}$的证明没有什么差别)
$$
0=I'=({\bf M}{\bf M}^{-1})'={\bf M}'{\bf M}^{-1}+{\bf M}({\bf M}^{-1})'.
$$
将$({\bf M}^{-1})'$解出,
$$
{\bf M}({\bf M}^{-1})'=-{\bf M}'{\bf M}^{-1}\implies({\bf M}^{-1})'=-{\bf M}^{-1}{\bf M}'{\bf M}^{-1}.
$$ |
|