|
C. V. Durell, A. Robson - Advanced Trigonometry-Dover Publications (2003), page 3
34. Prove that $\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
page 4
39. Prove that $c^{2}=a^{2} \cos 2 B+b^{2} \cos 2 A+2 a b \cos (A-B)$.
40. Prove that $\frac{b-c}{b+c} \cot \frac{A}{2}+\frac{b+c}{b-c} \tan \frac{A}{2}=2 \operatorname{cosec}(B-C)$.
41. Prove that $a(1+2 \cos 2 \mathrm{A}) \cos 3 \mathrm{B}+b(1+2 \cos 2 \mathrm{B}) \cos 3 \mathrm{A}=c(1+2 \cos 2 \mathrm{C})$
42. If $\cos A \cos B+\sin A \sin B \sin C=1$, prove that $A=45^{\circ}=B$. |
|