Forgot password?
 Register account
View 555|Reply 12

[函数] 三角函数问题

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-3-11 03:37 |Read mode
C. V. Durell, A. Robson - Advanced Trigonometry-Dover Publications (2003), page 3
34. Prove that $\frac{1+\cos (A-B) \cos C}{1+\cos (A-C) \cos B}=\frac{a^{2}+b^{2}}{a^{2}+c^{2}}$
page 4
39. Prove that $c^{2}=a^{2} \cos 2 B+b^{2} \cos 2 A+2 a b \cos (A-B)$.
40. Prove that $\frac{b-c}{b+c} \cot \frac{A}{2}+\frac{b+c}{b-c} \tan \frac{A}{2}=2 \operatorname{cosec}(B-C)$.
41. Prove that $a(1+2 \cos 2 \mathrm{A}) \cos 3 \mathrm{B}+b(1+2 \cos 2 \mathrm{B}) \cos 3 \mathrm{A}=c(1+2 \cos 2 \mathrm{C})$
42. If $\cos A \cos B+\sin A \sin B \sin C=1$, prove that $A=45^{\circ}=B$.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-3-11 11:44
回复 1# hbghlyj


34、

按积化和差,会有
\[\cos(A-B)\cos(C)=\frac{1}{2}[\cos(A-B+C)+\cos(A-B-C)]\]
\[=-\frac{1}{2}[\cos(2A)+\cos(2B)]\]
故此
\[\frac{1+\cos(A-B)\cos(C)}{1+\cos(A-C)\cos(B)}=\frac{1-\frac{1}{2}[\cos(2A)+\cos(2B)]}{1-\frac{1}{2}[\cos(2A)+\cos(2C)]}=\frac{2-\cos(2A)-\cos(2B)}{2-\cos(2A)-\cos(2C)}\]
\[=\frac{2-[1-2\sin^2(A)]-[1-2\sin^2(B)]}{2-[1-2\sin^2(A)]-[1-2\sin^2(C)]}\]
\[=\frac{\sin^2(A)+\sin^2(B)}{\sin^2(A)+\sin^2(C)}=\frac{a^2+b^2}{a^2+c^2}\]

39、

其实就是证明
\[\sin^2(C)=\sin^2(A)\cos(2B)+\sin^2(
B)\cos(2A)+2\sin(A)\sin(B)\cos(A-B)\]
这里面右边化开为
\[\sin^2(A)[\cos^2(B)-\sin^2(B)]+\sin^2(B)[\cos^2(A)-\sin^2(A)]+2\sin(A)\sin(B)[\cos(A)\cos(B)+\sin(A)\sin(B)]\]
\[=\sin^2(A)\cos^2(B)+\sin^2(B)\cos^2(A)+2\sin(A)\sin(B)\cos(A)\cos(B)\]
\[=[\sin(A)\cos(B)+\sin(B)\cos(A)]^2\]
\[=\sin^2(A+B)=\sin^2(C)\]

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-3-11 11:58
回复 1# hbghlyj


40、
\[\frac{b-c}{b+c}=\frac{\sin(B)-\sin(C)}{\sin(B)+\sin(C)}\]
\[=\frac{2\sin(\frac{B-C}{2})\cos(\frac{B+C}{2})}{2\sin(\frac{B+C}{2})\cos(\frac{B-C}{2})}=\tan(\frac{B-C}{2})\cot(\frac{B+C}{2})=\tan(\frac{B-C}{2})\tan(\frac{A}{2})\]
故此
\[\frac{b-c}{b+c}\cot(\frac{A}{2})=\tan(\frac{B-C}{2})\tan(\frac{A}{2})\cot(\frac{A}{2})=\tan(\frac{B-C}{2})\]
同理
\[\frac{b+c}{b-c}\tan(\frac{A}{2})=\cot(\frac{B-C}{2})\]
\[\frac{b-c}{b+c}\cot(\frac{A}{2})+\frac{b+c}{b-c}\tan(\frac{A}{2})=\tan(\frac{B-C}{2})+\cot(\frac{B-C}{2})\]
\[=\frac{\sin(\frac{B-C}{2})}{\cos(\frac{B-C}{2})}+\frac{\cos(\frac{B-C}{2})}{\sin(\frac{B-C}{2})}=\frac{1}{\sin(\frac{B-C}{2})\cos(\frac{B-C}{2})}=\frac{2}{\sin(B-C)}\]

41、

其实就是证明
\[\sin(A)(1+2\cos(2A))\cos(3B)+\sin(B)(1+2\cos(2B))\cos(3A)=\sin(C)(1+2\cos(2C))\]

这里面
\[\sin(A)(1+2\cos(2A))=\sin(A)(1+2-4\sin^2(A))=3\sin(A)-4\sin^3(A)=\sin(3A)\]
其他同理,那么上面变成
\[\sin(A)(1+2\cos(2A))\cos(3B)+\sin(B)(1+2\cos(2B))\cos(3A)\]
\[=\sin(3A)\cos(3B)+\sin(3B)\cos(3A)\]
\[=\sin(3(A+B))=\sin(3(\pi-C))=\sin(3C)=sin(C)(1+2\cos(2C))\]

42、
\[\cos(A)\cos(B)+\sin(A)\sin(B)\ge\cos(A)\cos(B)+\sin(A)\sin(B)\sin(C)=1\]
\[\cos(A-B)\ge 1\]
于是
\[\cos(A-B)=1\]
\[A=B\]
同时
\[\cos(A)\cos(B)+\sin(A)\sin(B)=\cos(A)\cos(B)+\sin(A)\sin(B)\sin(C)=1\]
故此
\[\sin(C)=1\]
也就是$C=90\du$,$B=C=45\du$

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-3-11 16:21
Last edited by 力工 2022-3-15 18:32献个丑:
39.配方,用射影与正弦定理。
\begin{align*}
RHS=a^2(2cos^2B-1)+b^2(2cos^2A-1)+2ab(cosAcosB+sinAsinB)\\
=(acosB+bcosA)^2+a^2(cos^2B-1)+b^2(cos^2A-1)+2absinAsinB\\
=(acosB+bcosA)^2-(a^2sin^2B+b^2sin^2A-2absinAsinB)\\
=c^2-(asinB-bsinA)^2=c^2=LHS\end{align*}

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-3-11 18:05
Last edited by 力工 2022-3-15 18:3334.先直接变形,得到\begin{align*}
\cos(A-B)cosC=-\cos(A-B)cos(A+B)
=-(cosAcosB)^2+(sinAsinB)^2\\
=\sin^2A(1-cos^2B)-(1-sin^2A)cosB\\
=\sin^2A-cos^2B
\end{align*},再用正弦定理

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-11 19:02
回复 4# 力工

sinA -> \sin A
cosA -> \cos A
另外公式太长可以尝试一下用多行公式环境,草稿本有示例

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-11 23:09
回复 4# 力工

只是换成,学一次就会了,
\begin{align*}
\end{align*}

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-3-15 13:10
回复 7# isee
还是没调成。

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2022-3-15 13:17
回复 8# 力工

你可以在下方的草稿本里面慢慢调试,好了再编辑帖子。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-15 16:27
回复  isee
还是没调成。
力工 发表于 2022-3-15 13:10
已经进步了,只是第一行(及最后两行)少用了 & 来对齐罢了

草稿本,kuing.orzweb.net/forumdisplay.php?fid=5 向下拉,注意要关掉去AD的插件

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-15 19:02
回复 10# isee

哪需回版块再拉?直接往下拉不就是了吗
不过,我还是有点后悔说这些了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-15 21:35
回复 11# kuing


哈哈哈哈哈,ABP 屏了,我只保留    fid=5 了

PS:其实几年来才用公式代码的,已经是迈出一大步了,只是对齐与换行弄反了,也是一种风格~~

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-15 22:33
回复 12# isee

添了一句js,看能不能避开 ABP

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit