Forgot password
 Register account
View 317|Reply 1

[几何] 四边形 线段比

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-3-12 22:42 |Read mode
S A B C D E F G H设四边形ABCD相对的两组顶点A,C和B,D与不在四边形的边或它们的延长线上的一点S联结而成的四条直线,与对角线BD和AC或它们延长线依次交于点E,G和F,H,则有$$\frac{A F}{F C} \cdot \frac{B G}{G D} \cdot \frac{C H}{H A} \cdot \frac{D E}{E B}=1$$


证明\begin{align*}&\frac{A F}{F C} \cdot \frac{B G}{G D} \cdot \frac{C H}{H A} \cdot \frac{D E}{E B}\\ =&\frac{\S{ABS}}{\S{BCS}}·\frac{\S{BCS}}{\S{CDS}}·\frac{\S{CDS}}{\S{DAS}}·\frac{\S{DAS}}{\S{ABS}}\\=&1\end{align*}

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-3-14 03:04
或者可以通过交比相等
(AC;FH)=(EG;BD)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:53 GMT+8

Powered by Discuz!

Processed in 0.014145 seconds, 22 queries