Forgot password?
 Register account
View 509|Reply 8

[几何] 如图 一个三角形面积公式求证明或者证伪

[Copy link]

1

Threads

1

Posts

12

Credits

Credits
12

Show all posts

xhz76B Posted 2022-3-12 22:44 |Read mode
D5811DA9F566075594A93579E6D3FAC3.jpg

1

Threads

1

Posts

12

Credits

Credits
12

Show all posts

 Author| xhz76B Posted 2022-3-16 17:52
求解答........

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2022-3-16 18:47
记 `BC=a` 等,内切圆半径为 `r`,则 `2S=r(a+b+c)`,于是要证的等式等价于
\[(r+AD)a+(r-BF)b+(r-CE)c=0,\]
过内心 `I` 作切线的平行线 `l` 与 `AD`, `BF`, `CE` 分别交于 `D'`, `F'`, `E'`,则上式变为
\[AD'\cdot a+(-BF')\cdot b+(-CE')\cdot c=0,\]
建坐标系,使 `x` 轴平行于 `l`,如下图。
QQ截图20220316184646.png
设 `A(x_1,y_1)`, `B(x_2,y_2)`, `C(x_3,y_3)`,则 `I` 的坐标为
\[I\left( \frac{ax_1+bx_2+cx_3}{a+b+c},\frac{ay_1+by_2+cy_3}{a+b+c} \right),\]
记 `I` 的纵坐标为 `y_I`,则
\begin{align*}
&AD'\cdot a+(-BF')\cdot b+(-CE')\cdot c\\
={}&(y_1-y_I)a+(y_2-y_I)b+(y_3-y_I)c\\
={}&\frac{b(y_1-y_2)+c(y_1-y_3)}{a+b+c}\cdot a\\
&+\frac{a(y_2-y_1)+c(y_2-y_3)}{a+b+c}\cdot b\\
&+\frac{a(y_3-y_1)+b(y_3-y_2)}{a+b+c}\cdot c,
\end{align*}
化简后显然为 `0`,即得证。

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2022-3-16 20:02
回复 3# kuing


也就你能写顺手,哈哈哈

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2022-3-16 20:24
回复 4# isee

你来一个纯几何法呗

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2022-3-16 20:40
将$$\overrightarrow0=BC·\overrightarrow{AI}+CA·\overrightarrow{BI}+AB·\overrightarrow{CI}$$
投影到AD方向得$$0=BC·(-AD-r)+CA·(BF-r)+AB·(CE-r)$$
除以2得$$0=\frac{BC·(-AD-r)+CA·(BF-r)+AB·(CE-r)}2$$
与$$\S{ABC}=\frac{BC·r+CA·r+AB·r}2$$相加得$$\S{ABC}=\frac{-BC·AD+CA·BF+AB·CE}2$$

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2022-3-16 21:12
回复 6# hbghlyj

圆奶乳齿呀,我竟然还建系

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2022-3-17 00:27
回复 6# hbghlyj


哈哈哈,我把4#后半句"看着像向量"给删了,主要怕追问,不曾想还真的行

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2022-3-17 14:01
回复 8# isee

所以有想法就应该上

Mobile version|Discuz Math Forum

2025-6-3 06:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit