|
点$P$到$n$边形的各边的距离与它们的长度成比例,则$P$是到$n$边形的边的距离的平方和的最小的点.
当$n=3$时,$P$是三角形的类似重心;当$n=4$时,若四边形为调和四边形,则$P$为对角线交点.
证明:
设$P$到$A_iA_{i+1}(i=1,2,⋯,n)$的有向距离为$d_i$,则$\sum_{i=1}^n|A_iA_{i+1}|·d_i=2S$为定值($S$为$n$边形的有向面积),由柯西不等式,$(\sum_{i=1}^n|A_iA_{i+1}|^2)(\sum_{i=1}^nd_i^2)\ge(\sum_{i=1}^n|A_iA_{i+1}|·d_i)^2=4S^2$,于是$\sum_{i=1}^nd_i^2\ge\dfrac{4S^2}{\sum_{i=1}^n|A_iA_{i+1}|^2}$,当$d_i$与$|A_iA_{i+1}|$成比例时取等. |
|