Forgot password?
 Register account
View 290|Reply 3

[几何] 两条陪位中线的中点 证明角相等

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-3-15 22:33 |Read mode
三角形ABC中,$AD,BE$为两条陪位中线,$M,N$分别为它们的中点,证明:$∠BAN=∠ABM$(贴吧 574) A B C D E M N

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-15 22:53
dvddddvd: $AC,BC$中点为$P,Q$。$AN,BM,BE,BP$延长交圆于$N_1,M_1,E_1,P_1$。帕斯卡$E_1BCAN_1P_1$和$P_1E_1\px CE$得$N_1P_1$平分$BC$。同理$M_1Q_1$平分$AC$。帕斯卡$BP_1N_1M_1Q_1A$得$M_1N_1\px AB$。所以$ABN_1M_1$为等腰梯形。所以∠BAN=∠ABM。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-15 23:17
ABCDEMNGFQP不知道3254:作$△ABC$外接圆$O$,取$BC,AC$中点$F,G$,$AF,BG$与圆$O$交于$Q,P$,由陪位中线性质,$\triangle ABD\sim\triangle AQC$,$\therefore{AB\over AD/2}={AQ\over AC/2}$,$\triangle ABM\sim\triangle AQG$
同理$\triangle ABN\sim\triangle PBF$
$∴\angle BAN=\angle BPF,\angle MBA=\angle AQG$,
又$\angle AFG=\angle BAF=\angle GPQ$,$∴FGPQ$共圆,$\angle BPF=\angle AQG$,$∴\angle BAN=\angle MBA$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-15 23:32
毒蝎无敌:设$\angle BAN=\alpha$,${\sinα\over\sin(A-α)}={\sin\angle ABE\over\sin\angle AEB}=\frac{AE}{AB}$
又由共轭中线,$\frac{AE}{CE}=\frac{AB}{CB}\frac{\sin\angle ABE}{\sin\angle CBE}=\frac{c^2}{a^2}$,
$∴AE=AC\cdot\frac{AE}{AE+CE}=b\cdot\frac{c^2}{c^2+a^2}$
于是${\sinα\over\sin(A-α)}=\frac{bc^2}{c(c^2+a^2)}⇒\frac{\tanα}{\sin A-\cos A\tan α}=\frac{bc^2}{c(c^2+a^2)}$
$\tanα=\frac{bc^2\sin A}{bc^2\cos A+c(c^2+a^2)}$,
又$\cos A={b^2+c^2-a^2\over2bc}$,$\sin A=\frac{a}{2R}$,$∴\tanα={abc\over R(a^2+b^2+3c^2)}$
上式关于$a,b$对称,证毕.

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit