Forgot password?
 Create new account
View 188|Reply 1

Frullanis Integral

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-17 16:16:27 |Read mode
If $f'(x)$ is continuous and the integral converges, $\int_0^\infty\frac{f(ax)-f(bx)}{x}\,dx=[f(0)-f(\infty)]\ln\left(b\over a\right)$.

\begin{align*}
  \int_0^\infty \frac{f(ax)-f(bx)}{x} \,dx &= \int_0^\infty \left[\frac{f(xt)}{x}\right]_{t=b}^{t=a} \, dx\\
   & = \int_0^\infty \int_b^a f'(xt) \, dt \, dx \\
   & = \int_b^a \int_0^\infty f'(xt) \, dx \, dt \\
   & = \int_b^a \left[\frac{f(xt)}{t}\right]_{x=0}^{x \to \infty}\, dt \\
   & = \int_b^a \frac{f(\infty)-f(0)}{t}\, dt \\
   & = \Big(f(\infty)-f(0)\Big)\Big(\ln(a)-\ln(b)\Big) \\
   & = \Big(f(\infty)-f(0)\Big)\ln\Big(\frac{a}{b}\Big) \\
\end{align*}

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-3-26 00:10:35
拉普拉斯变换计算广义积分:

令$\mathcal{L}\left\{f(t)\right\}=F(s)$,则
$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty}F(p)\, \mathrm{d}p,$$

$$\int_{0}^{\infty}\frac{f(t)}{t}e^{-st}\, \mathrm{d}t=\int_{s}^{\infty}F(p)\, \mathrm{d}p.$$
令 $s → 0$,假定可以改变取极限顺序,就得到性质
$$\int_{0}^{\infty}\frac{f(t)}{t}\, \mathrm{d}t=\int_{0}^{\infty}F(p)\, \mathrm{d}p.$$
即便在不可以交换,此计算依然有暗示性。例如,形式上按此计算得到
$$\int_{0}^{\infty}\frac{\cos at-\cos bt}{t}\, \mathrm{d}t =
       \int_{0}^{\infty}\left(\frac{p}{p^{2} + a^{2}}-\frac{p}{p^{2} + b^{2}}\right)\, \mathrm{d}p =
       \frac{1}{2}\left.\ln\frac{p^{2} + a^{2}}{p^{2} + b^{2}} \right|_{0}^{\infty} = \ln b - \ln a.
$$
这个性质的正确性可以用其他方法证明。它是傅汝兰尼积分(Frullani integral)的一个例子。

例子还有狄利克雷积分。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list