|
exponential diophantine equation
$12^x-5^y=144-125$
$144(12^{x-2}-1)=125(5^{y-3}-1)$
$144|5^{y-3}-1⇒y\equiv3\pmod{12}$, 设$y=3+12m$
$125|12^{x-2}-1⇒x\equiv2\pmod{100}$, 设$x=2+100 n$
$$144(12^{100n}-1)=125(5^{12m}-1)$$
若$3|m$,则$27|5^{36}-1⇒27|5^{12m}-1$,然而$27\nmid144$,矛盾.故$3\nmid m$.①
开始计算:
$11|12^{100n}- 1⇒11|5^{12m}-1⇒5|m$
$7|5^{60}-1⇒7|5^{12m}-1⇒7|12^{100n}-1⇒3|n$
(20593是素数)$20593|12^{300} - 1⇒20593|12^{100n}-1$$⇒20593|5^{12m}-1⇒1716|m⇒3|m$,与①矛盾.
综上,$x=2,y=3$是唯一解.
计算用的代码:
In[1]:=
MultiplicativeOrder[5^12, 11]
Out[1]:=
5
In[2]:=
MultiplicativeOrder[12^100, 7]
Out[2]:=
3
In[3]:=
MultiplicativeOrder[5^12, 20593]
Out[3]:=
1716
In[4]:=
Divisible[1716, 3]
Out[4]:=
True
|
|