Forgot password?
 Register account
View 375|Reply 0

[几何] 一个与Candy定理有关的结论

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2022-3-24 10:09 |Read mode
在圆内接四边形ABCD中,一条直线L分别交AB、BC、CD、DA于P、Q、R、S,若圆上四点A'、B'、C'、D'满足A'B'过P、B'C'过Q、C'D'过R,则D'A'过S.
Screenshot 2022-03-24 020900.png
证:设AC'交A'C于T,AD交A'D'于S'.
由Pascal定理,在圆内接六边形ABCA'B'C'中,AB交A'B'于P、BC交B'C'于Q、CA'交C'A于T共线,即T在L上.
由Pascal定理,在圆内接六边形ADCA'D'C'中,AD交A'D'于S'、DC交D'C'于R、CA'交C'A于T共线,即S'在L上,故S与S'同一,即D'A'过S.
Screenshot 2022-03-24 021000.png

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:44 GMT+8

Powered by Discuz!

Processed in 0.029508 second(s), 24 queries

× Quick Reply To Top Edit