Forgot password?
 Register account
View 293|Reply 2

[不等式] 能不能得到$\sum_{k=1}^{\infty}\abs{y_k}^2<\infty$

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2022-3-24 21:06 |Read mode
已知对每个$j$都定义$y_j$为
\[y_j=\sum_{i=1}^{\infty}a_{ij}x_i\]
若对每个$j$都有$\sum_{i=1}^{\infty}\abs{a_{ij}}^2<\infty$,且$\sum_{i=1}^{\infty}\abs{x_i}^2=M<\infty$,能不能得出
\[\sum_{k=1}^{\infty}\abs{y_k}^2<\infty\]

我是这么想的:
\begin{align*}
\sum_{k=1}^{\infty}\abs{y_k}^2
&=\sum_{k=1}^{\infty}\abs{\sum_{i=1}^{\infty}a_{ik}x_i}^2\\
&\le\sum_{k=1}^{\infty}\left[\sum_{i=1}^{\infty}\abs{a_{ik}x_i}\right]^2\\
&\le(赫尔德不等式)\sum_{k=1}^{\infty}\left[\sum_{i=1}^{\infty}\abs{a_{ik}}^2\sum_{i=1}^{\infty}\abs{x_i}^2\right]\\
&=M\sum_{k=1}^{\infty}\sum_{i=1}^{\infty}\abs{a_{ik}}^2
\end{align*}

这个和已知条件差了很多,怎么才能用上那个$\sum_{i=1}^{\infty}\abs{a_{ij}}^2<\infty$呢?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-3-24 21:23
反例:
$a_{ij}=x_i=\frac1i$,则
$\sum_{i=1}^{\infty}\abs{a_{ij}}^2=\frac{π^2}6$
$\sum_{i=1}^{\infty}\abs{x_i}^2=\frac{π^2}6$
$y_k=\sum_{i=1}^∞\frac1{i^2}=\frac{π^2}6$,故$\sum_{k=1}^{\infty}\abs{y_k}^2=\infty$

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2022-3-24 21:35
回复 2# hbghlyj

原来如此,谢谢,明白了。

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit