Forgot password?
 Register account
View 313|Reply 2

函数列 积分 证明一致收敛到0

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2022-3-25 01:40 |Read mode
设$f_1(x)$为$[0,a]$上的可积函数,递归地定义函数列$\{f_n\}$如下:$$f_{n+1}(x)=\int_0^xf_n(t)~\mathrm dt,\quad n≥1$$证明$\{f_n\}$一致收敛到0.

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-3-25 12:02
回复 1# hbghlyj
因为可积函数必定是有界的,所以存在$M$使得$\abs{f_1(t)}<M$。然后
\[\abs{f_2(x)}=\abs{\int_{0}^{x}f_1(t)dt}\le\int_{0}^{x}\abs{f_1(t)}dt\le\int_{0}^{x}Mdt\le Mx\]
\[\abs{f_3(x)}=\abs{\int_{0}^{x}f_2(t)dt}\le\int_{0}^{x}\abs{f_2(t)}dt\le\int_{0}^{x}Mtdt=M\frac{x^2}{2}\]

一直进行积分,最后有
\[\abs{f_{n+1}(x)}\le M\frac{x^n}{n!}\le M\frac{a^n}{n!}\to0(n\to\infty)\]
所以是一致收敛到零。

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-3-25 18:33
回复 1# hbghlyj


\[f_1(x)=a_{0}+a_{1}x+a_{2}x^2+...+a_{k}x^k+...\]
\[f_n(x)=a_{0,n}+a_{1,n}x+a_{2,n}x^2+...+a_{k,n}x^k+...\]
那么有
\[f_{n+1}(x)=\int_0^xf_n(t)dt=a_{0,n}x+a_{1,n}\frac{x^2}{2}+...+a_{k,n}\frac{x^{k+1}}{k+1}+...\]
故此
\[a_{k,n+1}=\frac{a_{k+1,n}}{k+1}\]
递推下来,就会有
\[f_n(x)=a_0\frac{x^{n-1}}{(n-1)!}+a_1\frac{x^n\cdot 1!}{n!}+a_2\frac{x^{n+1}\cdot 2!}{(n+1)!}+...+a_k\frac{x^{n+k-1}\cdot k!}{(n+k-1)!}+...\]
这里面$x\in[0,a]$,不可能跑到无穷大,对任意$x\in[0,a]$,始终会有
\[\lim_{n\to\infty}\frac{x^{n+k-1}}{(n+k-1)!}=0\]
所以这里面每一项的极限都是$0$

Mobile version|Discuz Math Forum

2025-6-5 18:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit