Forgot password?
 Register account
View 284|Reply 1

求3重根$α$附近极限$\frac{f(x) f''(x)}{(f'(x))^{2}}$

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2022-3-25 17:05 |Read mode
$f(x)$是4阶连续可导的,$f(α)=f'(α)=f''(α)=0$,$f'''(α)≠0$.求证$$\lim_{x \to \alpha} \frac{f(x) f''(x)}{(f'(x))^{2}}=\frac23$$证明(MSE)
将泰勒展开式,
\begin{align*}
f(x)&=f'''(\alpha)(x-\alpha)^3/6+o(x-\alpha)^3,
\\
f'(x)&=f'''(\alpha)(x-\alpha)^2/2+o(x-\alpha)^2
\\
f''(x)&=f'''(\alpha)(x-\alpha)+o(x-\alpha)
\end{align*}
代入就得$2/3$.

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2022-3-25 17:12
math.stackexchange.com/questions/2882589/ineq … g-f-f-f?noredirect=1

注意到$$\frac{f(x) f''(x)}{f'(x)^2} = 1 - \frac{d}{dx} \frac{f(x)}{f'(x)}.$$一般地,对于最低阶泰勒级数项为$c x^n$($n \geq 1$)的解析函数,$\dfrac{f(x)}{f'(x)} \sim \dfrac{cx^n}{ncx^{n-1}} = \dfrac{x}{n}$对$x \approx 0$,故$\lim_{x \to 0} \dfrac{d}{dx} \dfrac{f(x)}{f'(x)} = \dfrac{1}{n}$,因此$$\lim_{x \to 0} \frac{f(x) f''(x)}{f'(x)^2} = 1 - \frac{1}{n}.$$
请注意,我们没有对 $f''(x)$ 的值做任何假设;事实上,对于任何具有 $f''(0) \neq 0$ 的函数,极限是 $1/2$(因为您可以对简单的情况进行代数验证,例如 $f(x) = x^2$)。

Mobile version|Discuz Math Forum

2025-6-5 19:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit