|
The greatest term in Dobiński's formula
Question. Find the greatest term in Dobiński's formula; let $k_{0}$ denote the value of $k$ that maximizes $k^{n} / k !$.
Let $x=\lambda(n)$ be defined by the equation $x \ln x=n$.
Claim. $\left|k_{0}-\lambda(n)\right|<1$.
In other words, $k_{0}$ is either $\lfloor\lambda(n)\rfloor$ or $\lceil\lambda(n)\rceil$.
We prepare the proof with an estimate.
Lemma.
$$
\frac{1}{k}>\ln (k+1)-\ln (k)>\frac{1}{k+1} .
$$
Proof. Both inequalities follow from the identity
$$
\ln (k+1)-\ln (k)=\int_{k}^{k+1} \frac{d t}{t} .
$$$\square$
Proof of the Claim. Let $f(k)=k^{n} / k !$. Let $\ell=\lfloor\lambda(n)\rfloor$, so we have $\ell \leq$ $\lambda(n)<\ell+1$. We shall show that $k_{0} \in\{\ell, \ell+1\}$. This will follow from the following two statements.
(a) If $k \leq \ell-1$ then $f(k)<f(k+1)$.
(b) If $k \geq \ell+1$ then $f(k)>f(k+1)$
We need to study the quantity
$$
\frac{f(k+1)}{f(k)}=\frac{(k+1)^{n}}{(k+1) !} \cdot \frac{k !}{k^{n}}=\frac{(k+1)^{n-1}}{k^{n}}\tag1
$$
Let
$$
g(k)=\ln \left(\frac{f(k+1)}{f(k)}\right)=(n-1) \ln (k+1)-n \ln k .\tag2
$$
We need to show that
(a) if $k \leq \ell-1$ then $g(k)>0$, and
(b) if $k \geq \ell+1$ then $g(k)<0$.
Proof of statement (a). We restate the inequality $g(k)>0$ :
$$
(n-1) \ln (k+1)>n \ln k,\tag3
$$
or equivalently,
$$
\frac{\ln (k+1)}{\ln k}>\frac{n}{n-1} .\tag4
$$
Subtracting 1 from each side, this is equivalent to
$$
\frac{\ln (k+1)-\ln k}{\ln k}>\frac{1}{n-1} .\tag5
$$
By the Lemma, we have $\ln (k+1)-\ln k>1 /(k+1)$, so for Eq. (5) to hold, it suffices if
$$\frac{1}{(k+1) \ln k} \geq \frac{1}{n-1}\tag6$$
in other words,
$$
(k+1) \ln k \leq n-1\tag7
$$
So we need to show that if $k \leq \ell-1$ then Eq. (7) holds. But in this case $(k+1) \ln k \leq \ell \ln (\ell-1)=\ell \ln (\ell)-\ell(\ln (\ell)-\ln (\ell-1))<n-\ell(\ln (\ell)-\ln (\ell-1))<$ $n-1$. In the last step we used that $\ln (\ell)-\ln (\ell-1)>1 / \ell$ (see the Lemma). This completes the proof of statement (a).
Proof of statement (b). We need to show that if $k \geq \ell+1$ then $g(k)<0$, i. e.,
$$
(n-1) \ln (k+1)<n \ln k .\tag8
$$
As above (see Eq. (5)), this is equivalent to
$$
\frac{\ln (k+1)-\ln k}{\ln k}<\frac{1}{n-1} .\tag9
$$
By the Lemma, we have $\ln (k+1)-\ln k<1 / k$, so for Eq. (9) to hold, it suffices if
$$
\frac{1}{k \ln k}<\frac{1}{n-1}\tag{10}
$$
in other words,
$$k \ln k > n − 1.\tag{11}$$
In fact, by definition, $k \ln k ≥ (\ell+ 1) \ln(\ell+ 1) > n$.$\square$ |
|