|
Author |
isee
Posted 2022-3-31 17:11
Last edited by isee 2022-3-31 18:06回复 3# kuing
乘以对称和,果然是角度不同,风景不同.
================================
把根号外的分式化为常数试试
\begin{align*} \frac 1{u+v}\sqrt {\left(\frac uv\right)^2+\left(\frac vu\right)^2}&=\frac 1{\frac {u+v}{uv}}\cdot \frac 1{uv}\sqrt {\left(\frac uv\right)^2+\left(\frac vu\right)^2}\\[1em] &=8\sqrt {\frac 1{u^2v^2}\left(\frac uv\right)^2+\frac 1{u^2v^2}\left(\frac vu\right)^2}\\[1em] &=8\sqrt {\left(\frac 1v\right)^4+\left(\frac 1u\right)^4}\end{align*}
而由二元幂平均不等式
\begin{gathered}
\left({\frac {\left(\frac 1v\right)^4+\left(\frac 1u\right)^4}2}\right)^{\frac 14}\geqslant \left(\frac {\left(\frac 1v\right)^1+\left(\frac 1u\right)^1}2\right)^{\frac 11}=\frac 1{16}\end{gathered}
从而求式的最小值为$\frac{\sqrt 2}{32}$. |
|