Forgot password?
 Register account
View 384|Reply 4

[不等式] 求$\frac 1{u+v}\sqrt {(\frac uv)^2+(\frac vu)^2}$ 的最小值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-29 19:38 |Read mode
源自知乎提问



:已知正实数 $u,v$ 满足 $\frac 1u+\frac 1v=\frac 18$,则 $\frac 1{u+v}\sqrt {\left(\frac uv\right)^2+\left(\frac vu\right)^2}$ 的最小值为______.

解答先不上,哈哈哈~

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-30 01:35
看了那边的图,差点以为是 `\dfrac1u+\dfrac1v=\dfrac1f`

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-30 01:38
也可以不用什么不等式
\begin{align*}
\text{原式}&=\frac18\cdot\frac1{\left( \frac1u+\frac1v \right)(u+v)}\sqrt{\left( \frac uv \right)^2+\left( \frac vu \right)^2}\\
&=\frac18\cdot\frac1{2+\frac uv+\frac vu}\sqrt{\left( \frac uv+\frac vu \right)^2-2}\\
&=\frac18\cdot\frac{\sqrt{t^2-2}}{2+t}\quad(t\geqslant2)
\end{align*}
然后证关于 t 递增也 OK。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-3-31 16:57
回复 2# kuing

一说之后再也回不去了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-3-31 17:11
Last edited by isee 2022-3-31 18:06回复 3# kuing

乘以对称和,果然是角度不同,风景不同.


================================


把根号外的分式化为常数试试

\begin{align*} \frac 1{u+v}\sqrt {\left(\frac uv\right)^2+\left(\frac vu\right)^2}&=\frac 1{\frac {u+v}{uv}}\cdot \frac 1{uv}\sqrt {\left(\frac uv\right)^2+\left(\frac vu\right)^2}\\[1em] &=8\sqrt {\frac 1{u^2v^2}\left(\frac uv\right)^2+\frac 1{u^2v^2}\left(\frac vu\right)^2}\\[1em] &=8\sqrt {\left(\frac 1v\right)^4+\left(\frac 1u\right)^4}\end{align*}
   
而由二元幂平均不等式

\begin{gathered}
\left({\frac {\left(\frac 1v\right)^4+\left(\frac 1u\right)^4}2}\right)^{\frac 14}\geqslant \left(\frac {\left(\frac 1v\right)^1+\left(\frac 1u\right)^1}2\right)^{\frac 11}=\frac 1{16}\end{gathered}

从而求式的最小值为$\frac{\sqrt 2}{32}$.

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit