Forgot password?
 Register account
View 461|Reply 8

[不等式] 再来个三元不等式

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-31 10:29 |Read mode
已知正实数a,b,c,求证:$\frac {a+b}{c^2}+\frac {b+c}{a^2}+\frac {c+a}{b^2}\ge\frac 2a+\frac 2b+\frac 2c $

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-3-31 13:56
回复 1# 走走看看

\[\frac{a}{b^2}+\frac{b}{a^2}+\frac{1}{a}+\frac{1}{b}=(\frac{a}{b}+\frac{b}{a})(\frac{1}{a}+\frac{1}{b})\ge 2(\frac{1}{a}+\frac{1}{b})\]
\[\frac{a}{b^2}+\frac{b}{a^2}\ge\frac{1}{a}+\frac{1}{b}\]
如此三项相加就有
\[\frac{a}{b^2}+\frac{b}{a^2}+\frac{c}{a^2}+\frac{a}{c^2}+\frac{c}{b^2}+\frac{b}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\]
\[\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge \frac{2}{a}+\frac{2}{b}+\frac{2}{c}\]

Rate

Number of participants 1威望 +1 Collapse Reason
走走看看 + 1 简洁

View Rating Log

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-31 13:57
昨天这帖 2# 的方法照搬就行了。

直接用 `a+b\ge2\sqrt{ab}` 放一下,只需证
\[\sum\frac{2\sqrt{ab}}{c^2}\ge\sum\frac2a,\]
也就是
\[\sum\frac1{c^{5/2}}\ge\sum\frac1{a^{3/2}b^{1/2}c^{1/2}},\]
显然成立。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-31 15:42
回复 2# 战巡

第一行的因式分解,啧啧啧~

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-3-31 17:13
回复 3# kuing

最后一个式子不知如何变换。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-31 17:14
回复 5# 走走看看

`x^5+y^5+z^5\ge x^3yz+xy^3z+xyz^3` 这样写总能反应过来吧?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-3-31 18:03
回复 6# kuing

现在看明白了。这个式子有点像排序不等式。要是高中生使用,必须先证明啊。怎么证呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-3-31 18:19
回复 7# 走走看看

随便证,自己想。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2022-3-31 21:48
Last edited by 走走看看 2022-3-31 22:09回复 8# kuing

证明有点费事,写一下吧。

\begin{align*}

x^5+y^5-x^3y^2-x^2y^3=(x^3-y^3)(x^2-y^2)\ge 0 \\\\

x^5+z^5-x^3z^2-x^2z^3=(x^3-z^3)(x^2-z^2)\ge 0 \\\\

y^5+z^5-y^3z^2-y^2z^3=(y^3-z^3)(y^2-z^2)\ge 0 \\\\

∴  x^5+y^5-x^3y^2-x^2y^3+x^5+z^5-x^3z^2-x^2z^3+y^5+z^5-y^3z^2-y^2z^3\ge 0 \\\\

∴  2x^5+2y^5+2z^5\ge x^3(y^2+z^2)+y^3(x^2+z^2)+z^3(x^2+y^2) \\\\
\ge 2x^3yz+2y^3xz+2z^3xy\\\\

\end{align*}

故命题正确。

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit