|
Author |
走走看看
Posted 2022-3-31 21:48
Last edited by 走走看看 2022-3-31 22:09回复 8# kuing
证明有点费事,写一下吧。
\begin{align*}
x^5+y^5-x^3y^2-x^2y^3=(x^3-y^3)(x^2-y^2)\ge 0 \\\\
x^5+z^5-x^3z^2-x^2z^3=(x^3-z^3)(x^2-z^2)\ge 0 \\\\
y^5+z^5-y^3z^2-y^2z^3=(y^3-z^3)(y^2-z^2)\ge 0 \\\\
∴ x^5+y^5-x^3y^2-x^2y^3+x^5+z^5-x^3z^2-x^2z^3+y^5+z^5-y^3z^2-y^2z^3\ge 0 \\\\
∴ 2x^5+2y^5+2z^5\ge x^3(y^2+z^2)+y^3(x^2+z^2)+z^3(x^2+y^2) \\\\
\ge 2x^3yz+2y^3xz+2z^3xy\\\\
\end{align*}
故命题正确。 |
|