Forgot password?
 Register account
View 667|Reply 6

[函数] 利用导数证勾股定理

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-3-31 16:39 |Read mode
Last edited by isee 2022-4-3 08:28源自知乎提问



:已知直角 $\triangle ABC$, $\angle C=90^\circ$,求证: $a^2+b^2=c^2$,即勾股定理.

将“纯代数方法”仅当作是不构造辅助线吧.

注意到在 ${\rm {Rt}}\triangle ABC$ 中有

\begin{gathered}  a^2+b^2=c^2\\[1em] \iff \left(\frac ac\right)^2+\left(\frac bc\right)^2=1\\[1em] \iff \sin^2A+\cos^2A=1, \end{gathered}

于是令

\begin{align*} f(x)&=\sin^2x+\cos^2x,{~}x\in \mathbb R\\[1em] f'(x)&=2\sin x\cos x+2\cos x(-\sin x)=0, \end{align*}

于是 $f(x)$ 为常数函数,而 $f(0)=1,$ 从而 $\sin^2x+\cos^2x=1$,于是 $\sin^2A+\cos^2A=1,$ 得证.




===========
注:两角和差公式可利用几何法证明避开传统的两点距离,以免循环论证.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-3-31 22:39
这个讲义的第53页用导数推出两角和差
捕获.PNG

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-3-31 22:47
回复 2# hbghlyj

是啊,我又以为大家都知道,直接\[(\cos(x+y))'=(\cos x)'\cos y-(\sin x)'\sin y\]就是了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-4-1 10:36
回复 4# hbghlyj

对,对 x 求导

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2022-4-1 13:17
回复 2# hbghlyj
厉害,学识、见识真广

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-4-1 14:20
Last edited by isee 2022-4-1 20:05回复 4# hbghlyj


哦哦哦,我细看了下,误会你的意思了.
我说的是从一个恒等式到另一个,而你是直接证明这两个恒等式.


=============

不过,必须提醒一下,Lecture Notes (Modified on 4 March 2022)——即2#那份英文讲义——sin x, cos x 都是以级数的形式定义的,从而得到 (sin x)', (cos x)' ,也就不存在循环论坛的问题.

在一般的数学分析里——如华东师大版——(sin x)' 即 sin x 导数 的证明是依赖和差化积,而和差化积是依赖 cos(x+y)=cos x cos y-sin x sin y 和角公式的,有循环论坛的可能

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-4-11 00:11
Last edited by isee 2022-4-11 00:19还是传上来吧,至少是中文的,《陶哲轩实分析》第333页-337,人民邮电出版社,译者王昆扬.
Screenshot_20220411_000530_com.android.gallery3d_edit_50307295257426.jpg
Screenshot_20220411_000538_com.android.gallery3d_edit_50291294388678.jpg
Screenshot_20220411_000547_com.android.gallery3d_edit_50274305420972.jpg
Screenshot_20220411_000551_com.android.gallery3d_edit_50242730477227.jpg
Screenshot_20220411_000555_com.android.gallery3d_edit_50216903335044.jpg

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit