Forgot password
 Register account
View 383|Reply 1

[几何] 几何最值

[Copy link]

76

Threads

34

Posts

1

Reputation

Show all posts

大佬最帅 posted 2022-3-31 22:04 |Read mode
mmexport1648735425874.jpg

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2022-4-1 14:27
回复 1# 大佬最帅


很显然$\angle AEB=\angle CDF=90\du$,$E,G,D,H$共圆,而且$HG$正好是这个圆的直径,如此就有$\sin(\angle EHD)=\frac{ED}{d}=\frac{ED}{HG}$

而$\angle EHD=\angle HAD+\angle HDA=45\du+\angle HDA$,如果我们过$C$作$CI\perp AB$于$I$,那么很容易求出$CI=\sqrt{3},OI=1$
那么如果令$OD=x$,就会有
\[CD=\sqrt{CI^2+ID^2}=\sqrt{3+(1+x)^2}\]
然后
\[\sin(\angle EHD)=\sin(45\du+\angle HDA)=\frac{1}{\sqrt{2}}(\sin(\angle HDA)+\cos(\angle HDA))\]
\[=\frac{1}{\sqrt{2}}(\frac{CI}{CD}+\frac{ID}{CD})=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}+1+x}{\sqrt{3+(1+x)^2}}\]
另一方面很容易证明$ED=\sqrt{EO^2+OD^2}=\sqrt{4+x^2}$,于是有
\[\sin(\angle EHD)=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}+1+x}{\sqrt{3+(1+x)^2}}=\frac{\sqrt{4+x^2}}{HG}\]
\[HG^2=\frac{2(3+(1+x)^2)(4+x^2)}{(\sqrt{3}+1+x)^2}\]
接下来就是暴力求导,然后求解四次方程,然后套入计算,我反正懒的搞了,这题建议丢掉

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:49 GMT+8

Powered by Discuz!

Processed in 0.012394 seconds, 25 queries