Forgot password?
 Register account
View 428|Reply 1

∫dθ/(1+e*cosθ)²怎么算

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2022-4-3 05:16 |Read mode
由角动量守恒得出Kepler问题中$θ$和$t$的关系(Kepler第二定律):
这份讲义的45页的6.21式:
Time dependence The time dependence may be recovered by solving $\dot{\theta}=h u^{2}(\theta)$ as
$$
h t=\int \frac{\mathrm{d} \theta}{u^{2}(\theta)}=r_{0}^{2} \int \frac{\mathrm{d} \theta}{(1+e \cos \theta)^{2}}
$$
which gives $t$ as a function of $\theta$.
WolframAlpha: Screenshot 2022-04-02 222411.png
Maple: Screenshot_2022_0402_222252.png

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2022-4-4 17:24
回复 1# hbghlyj

令$u=\tan\frac{x}{2}$则$dx=\frac{2}{1+u^2}du$,$\cos x=\frac{1-u^2}{1+u^2}$,代入积分变为
\[2\int\frac{1+u^2}{[e(1-u^2)+(1+u^2)]^2}du\]

作部分分式分解,上式积分变为
\[\frac{1}{1-e}\int\frac{1}{(1-e)u^2+e+1}du+\frac{-2e}{1-e}\int\frac{1}{[(1-e)u^2+e+1]^2}du\]

第一项作部分分式分解,分母就是那个二次多项式的两个一次因子,变为$\int\frac{1}{Au+b}du$的形式,就能积出来。第二项也作部分分式分解,还是$\int\frac{1}{Au+b}du$的形式,也能积出来,就得到最后的结果了。

Mobile version|Discuz Math Forum

2025-6-5 18:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit