|
战巡
Posted 2022-4-5 21:32
回复 1# lrh2006
首先不难证明$\tan(\angle DCF)=\frac{2}{3}$,然后$\sin(\angle DCF)=\frac{2}{\sqrt{13}}$
另外$\angle CDF=2\angle DCF$也很容易证明,接下来就有$\angle F=180\du-\angle DCF-\angle CDF=180\du-3\angle DCF$
而后
\[\sin(\angle F)=\sin(180\du-3\angle DCF)=\sin(3\angle DCF)\]
\[=3\sin(\angle DCF)-4\sin^3(\angle DCF)=\frac{46}{13\sqrt{13}}\]
接下来按角平分线定理
\[\frac{DC}{DF}=\frac{BC}{BF}=\frac{S_{\Delta CBD}}{S_{\Delta DBF}}\]
这里面
\[\frac{DC}{DF}=\frac{\sin(\angle F)}{\sin(\angle DCF)}=\frac{23}{13}\]
故此
\[S_{\Delta CBD}=23\]
\[S_{\Delta DBE}=\frac{1}{2}S_{CBD}=\frac{23}{2}\]
而显然$\Delta DBE\sim\Delta ABD$,有
\[\frac{S_{\Delta DBE}}{S_{\Delta ABD}}=\left(\frac{BE}{BD}\right)^2=\sin^2(\angle DCB)=\frac{4}{13}\]
故此
\[S_{\Delta ABD}=\frac{23}{2}\cdot\frac{13}{4}=\frac{299}{8}\] |
|