Forgot password?
 Register account
View 535|Reply 3

[几何] 圆的综合题

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2022-4-5 13:45 |Read mode
IMG_20220405_112408.jpg
mmexport1649145865524.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-5 21:32
回复 1# lrh2006


首先不难证明$\tan(\angle DCF)=\frac{2}{3}$,然后$\sin(\angle DCF)=\frac{2}{\sqrt{13}}$

另外$\angle CDF=2\angle DCF$也很容易证明,接下来就有$\angle F=180\du-\angle DCF-\angle CDF=180\du-3\angle DCF$
而后
\[\sin(\angle F)=\sin(180\du-3\angle DCF)=\sin(3\angle DCF)\]
\[=3\sin(\angle DCF)-4\sin^3(\angle DCF)=\frac{46}{13\sqrt{13}}\]
接下来按角平分线定理
\[\frac{DC}{DF}=\frac{BC}{BF}=\frac{S_{\Delta CBD}}{S_{\Delta DBF}}\]

这里面
\[\frac{DC}{DF}=\frac{\sin(\angle F)}{\sin(\angle DCF)}=\frac{23}{13}\]
故此
\[S_{\Delta CBD}=23\]
\[S_{\Delta DBE}=\frac{1}{2}S_{CBD}=\frac{23}{2}\]
而显然$\Delta DBE\sim\Delta ABD$,有
\[\frac{S_{\Delta DBE}}{S_{\Delta ABD}}=\left(\frac{BE}{BD}\right)^2=\sin^2(\angle DCB)=\frac{4}{13}\]
故此
\[S_{\Delta ABD}=\frac{23}{2}\cdot\frac{13}{4}=\frac{299}{8}\]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2022-4-6 15:51
回复 2# 战巡
谢谢老师!
和前面那道一样,有没有初三学生能看懂的法子呢,让我再想想

9

Threads

38

Posts

924

Credits

Credits
924

Show all posts

player1703 Posted 2022-4-7 08:23

RE: 圆的综合题

首先$\Rtt ABD$形状是完全确定的里面线段的比值也就是完全确定的. 有$\frac{\S{BDE}}{\S{ABD}} = \frac{BE}{AB} = \frac{4}{13}$ 以及 $\frac{BD}{DC}=\frac{BD}{2DE}=\frac{\sqrt{13}}{6}$.
$\triangle BDF \sim \triangle DCF$ 面积比为相似比平方$\left(\frac{BD}{DC}\right)^2=\frac{13}{36}$
$\frac{\S{BDC}}{\S{BDF}} = \frac{23}{13}$
实际上$DF$是切线但是这道题直接切割线定理不好用但是能想到更基本的证明切割线定理用的相似三角形就好了

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit