Forgot password?
 Register account
View 382|Reply 2

[不等式] 不等式问题

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2022-4-9 18:40 |Read mode
IMG_20220409_183957.jpg

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-13 11:37
回复 1# 大佬最帅

令$w_i=\frac{x_i}{S}$,那么有$\sum_{i=1}^nw_i=1$,上面经过变形,会得到等价证明
\[\frac{n(n-2)}{(n-1)\cdot 2\sum_{1\le i<j\le n}\frac{x_i}{S}\cdot \frac{x_j}{S}}\ge \sum_{i=1}^n\frac{1-\frac{2x_i}{S}}{(1-\frac{x_i}{S})^2}\]
\[\frac{n(n-2)}{n-1}\ge \sum_{i=1}^n\frac{1-2w_i}{(1-w_i)^2}\cdot 2\sum_{1\le i<j\le n}w_iw_j=\sum_{i=1}^n(1-\frac{w_i^2}{(1-w_i)^2})(1-\sum_{i=1}^nw_i^2)\]
即证明
\[(n-\sum_{i=1}^n\frac{w_i^2}{(1-w_i)^2})(1-\sum_{i=1}^nw_i^2)\le \frac{n(n-2)}{n-1}\]

这里考察函数$f(x)=\frac{x^2}{(1-x)^2}$,你会发现有
\[f''(x)=\frac{2+4x}{(1-x)^4}>0\]
按琴生不等式说明有
\[\sum_{i=1}^n\frac{w_i^2}{(1-w_i)^2}=\sum_{i=1}^nf(w_i)\ge nf(\frac{1}{n}\sum_{i=1}^nw_i)=nf(\frac{1}{n})=\frac{n}{(n-1)^2}\]
\[n-\sum_{i=1}^n\frac{w_i^2}{(1-w_i)^2}\le n-\frac{n}{(n-1)^2}=\frac{n^2(n-2)}{(n-1)^2}\]
另一边
\[1-\sum_{i=1}^nw_i^2\le 1-n\left(\frac{\sum_{i=1}^nw_i}{n}\right)^2=\frac{n-1}{n}\]
那么当然会有
\[(n-\sum_{i=1}^n\frac{w_i^2}{(1-w_i)^2})(1-\sum_{i=1}^nw_i^2)\le\frac{n^2(n-2)}{(n-1)^2}\cdot\frac{n-1}{n}=\frac{n(n-2)}{n-1}\]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

 Author| 大佬最帅 Posted 2022-4-13 11:53
回复 2# 战巡
如果我没算错,设s=1后,左边有最小值,右边有最大值,左边随意,右边琴生,切线也可以

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit