Forgot password?
 Register account
View 347|Reply 3

[几何] 有关费马点时的最小值问题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-4-16 17:01 |Read mode
已知$M,N$是凸四边形$ABCD$内部的两个动点,记$s=MA+MB+MN+NC+ND$。证明或否定:当且仅当$M,N$分别为$\triangle NAB,\triangle MCD$的费马点时,$s$取得最小值。
41601.jpg

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-16 17:25
这需要该凸四边形满足一定条件才成立的。

理由是,即便是三角形,费马点取最小也需要“内角不超 120°”这一条件,那么如果四边形非常扁,此时 1# 的结论也不会成立。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-4-16 18:29
回复 2# kuing
?看不懂

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-16 18:32
回复 3# lemondian

好的

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit