Forgot password?
 Register account
View 348|Reply 3

同一数字组成的恒等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-4-17 10:53 |Read mode
Last edited by hbghlyj 2022-4-18 08:01$$7^{7777}\equiv7\pmod{777}$$
$$6666=\dfrac{6^{6}-\dfrac{6^{6}-\dfrac{6^{6}-\dfrac{6^{6}-\dfrac{6^{6}}{6}}{6}}{6}}{6}}{6}$$
$$\small111=1-\left|
\begin{array}{cc}
1 & 11 \\
111 & 1111 \\
\end{array}
\right| -\left|
\begin{array}{ccc}
1 & 11 & 111 \\
1111 & 11111 & 111111 \\
1111111 & 11111111 & 111111111 \\
\end{array}
\right| -\left|
\begin{array}{cccc}
1 & 11 & 111 & 1111 \\
11111 & 111111 & 1111111 & 11111111 \\
111111111 & 1111111111 & 11111111111 & 111111111111 \\
1111111111111 & 11111111111111 & 111111111111111 &
   1111111111111111 \\
\end{array}
\right|$$ 20220417_040106.jpg
twitter.com/potetoichiro/status/1515497230693 … MTEt-3mkv9Q&s=19

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-4-17 15:17
Last edited by hbghlyj 2022-4-18 08:00最后这个 无限迭代下去的积分怎么求呢?
将积分记为$s$,则$s=\int_{1-s}^{11+s}\frac1{11}\mathrm dx=\frac{1}{11} (2 s+10)$⇒$s=\frac{10}9$

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2022-4-18 13:45
最后这个 无限迭代下去的积分怎么求呢?
将积分记为$s$,则$s=\int_{1-s}^{11+s}\frac1{11}\mathrm dx=\frac{1}{11} (2 s+\color{red}{12})\implies s=\frac43$
hbghlyj 发表于 2022-4-17 15:17
$11+s-(1-s)=2s+10$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-4-18 15:01
回复 3# tommywong 谢谢

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit