Forgot password?
 Register account
View 293|Reply 2

[不等式] 三元不等式

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2022-4-17 19:50 |Read mode
设$a,b,c$是正实数,求证:
\[\dfrac{bc}{a^2+bc}+\dfrac{ca}{b^2+ca}+\dfrac{ab}{c^2+ab}\le \dfrac a{b+c}+\dfrac b{c+a}+\dfrac c{a+b}.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-17 22:27
很弱哇,记 `p=a^2+b^2+c^2`, `q=ab+bc+ca`,由 CS 有
\begin{align*}
\LHS&=3-\sum\frac{a^2}{a^2+bc}\leqslant3-\frac{(a+b+c)^2}{\sum(a^2+bc)}=3-\frac{p+2q}{p+q},\\
\RHS&=\sum\frac{a^2}{ab+ca}\geqslant\frac{(a+b+c)^2}{2(ab+bc+ca)}=\frac{p+2q}{2q},
\end{align*}
所以只需证
\[3-\frac{p+2q}{p+q}\leqslant\frac{p+2q}{2q},\]
去分母化简就是 `p\geqslant q`,显然。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-17 22:42
唉,写完才想起这帖:forum.php?mod=viewthread&tid=5523#pid27730 一样嘀,也是习惯性设 p, q……

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit