Forgot password?
 Register account
View 321|Reply 4

[不等式] 求证三元不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2022-4-22 10:38 |Read mode
已知正实数$a,b,c$满足$a^3+b^3+c^3=3$,求证:$\dfrac{1}{3-2a}+\dfrac{1}{3-2b}+\dfrac{1}{3-2c}\geqslant 3$.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2022-4-22 11:11
回复 1# lemondian


\[f(a)=\frac{1}{3-2a}-\frac{2}{3}(a^3-1)-1\]
\[f'(a)=\frac{2}{(3-2a)^2}-2a^2=0\]
\[a=\frac{1}{2},a=1,a=\frac{1}{4}(3\pm\sqrt{17})\]
这里鉴于$0<a<\sqrt[3]{3}$,后面这个$a=\frac{1}{4}(3\pm\sqrt{17})$根本不在范围内,不用考虑,剩下的嘛,有
\[f(\frac{1}{2})=\frac{1}{12},f(1)=0\]
再考虑两个端点,有
\[f(0)=0,f(\sqrt[3]{3})=\frac{1}{3-2\sqrt[3]{3}}-\frac{7}{3}=6.3246\]
这样就说明在$0<a<\sqrt[3]{3}$中,恒有
\[f(a)\ge 0\]
于是
\[\frac{1}{3-2a}\ge \frac{2}{3}(a^3-1)+1\]
\[\frac{1}{3-2a}+\frac{1}{3-2b}+\frac{1}{3-2c}\ge \frac{2}{3}(a^3+b^3+c^3-3)+3=3\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2022-4-22 15:58
回复 2# 战巡

谢谢了,还有其他的方法吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-22 17:42
回复 3# lemondian

我能想到的办法都比 2# 麻烦得多,这题切线法是最自然的了。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-4-22 23:42
有了,用反证法,还算简单,只需证明:如果
\[\frac1{3-2a}+\frac1{3-2b}+\frac1{3-2c}<3\]
则必有 `a^3+b^3+c^3<3`。令
\[\frac1{3-2a}=\frac13+x,\,\frac1{3-2b}=\frac13+y,\,\frac1{3-2c}=\frac13+z,\]
则 `x`, `y`, `z>0`, `x+y+z<2`,有
\[a=\frac{9x}{2+6x}<\frac{9x}{7x+y+z},\]
于是
\begin{align*}
a^3+b^3+c^3&<\sum\left( \frac{9x}{7x+y+z} \right)^3\\
&=\sum\left( \frac{9x}{3x+3x+x+y+z} \right)^3\\
&\leqslant\sum\left( \frac{3x}{\sqrt[3]{3x\cdot3x\cdot(x+y+z)}} \right)^3\\
&=\sum\frac{3x}{x+y+z}\\
&=3,
\end{align*}
即得证。

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit